关于AMD芯片组的发展史.高手进...........

2024-05-18 09:16

1. 关于AMD芯片组的发展史.高手进...........

你好,希望以下答案对你有用

AMD芯片组近年发展史(排序由高到低):
7系 790FX 790X 780G 780V 740
6系 690 690G 690V 
5系 580X(CF) 570X(CF)

ALi m1689是台湾一个芯片品牌,采用939/940接口,比上面任何一个都差些,因为接口落后了,估计和NVIDIA的nforce400差不多

用两个IDE硬盘理论上是不会降低速度的,如果组件raid0速度会提高一倍(理论上)

闪龙3200+才用754接口,可以支持只是你不一定买得到,太老了

关于AMD芯片组的发展史.高手进...........

2. 介绍下intel以及amd芯片组发展史!

AMD对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。   o 1981年,AMD 287 FPU ,使用Intel 80287核心。产品的市场定位和性能与Intel 80287基本相同。也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。   o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel 8080核心。产品的市场定位和性能与Intel同名产品基本相同。   o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。   o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。   o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----33*4、133MHz,0.35微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。   o AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。   o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。   o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上0.25微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,.K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。   o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了0.25微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。   oAMD于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。   oAMD于2007下半年推出K10架构。   采用K10架构的 Barcelona为四核并有4.63亿晶体管。Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。   ● Barcelona新特性解析:引入全新SSE128技术   Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE操作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。   而Barcelona加宽了执行单元从64位到128位,所有128位的SSE操作不再需要进行解码分解为两个64位操作,并且浮点调度器也可以支持这种128位 SSE操作,提高了执行效率。   提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。   ● Barcelona新特性解析:内存控制器再度强化   当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。   Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个操作,而且读和写的切换会有非常大的损失。如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。   但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行操作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。   Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。   内存控制器的预取功能是运用相当广泛、十分重要的一项功能。预取可以减少内存延迟对整体性能的负面影响。当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。   K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。   ● Barcelona新特性解析:创新——三级缓存   受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。   处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。   现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。   Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。   Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。   L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。   AMD全新45nm的Shanghai架构   2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。   AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。堪称完美的提前推出,使之成为x86服务器性能的新王者。通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。”   领先的性能满足当今最迫切的商务需求   数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。   卓越的虚拟化性能   具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。   无与伦比的性价比   与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括:   o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。   o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。   o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。   o 即将推出的超传输总线(TM)3.0 (HyperTransport(TM) 3.0)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到17.6GB/s。   无可匹敌的节能特性   AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。   在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于英特尔四核处理器的平台在相同状态下的功耗则为179瓦。基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载). 4   前所未有的平台稳定性   作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。
 o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。 使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位操作系统。   o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。   o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。   o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。   o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。   o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。为满足消费者的不同需求,AMD近期也推出了3核羿龙产品!   对于消费者, AMD 也提供全系列 64 位产品。   o AMD 雷鸟(TM) (Thunderbird)处理器   o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。
INTEL
2000年:英特尔奔腾4(Pentium 4)处理器   基于英特尔奔腾4处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染3D图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有4200万个晶体管和仅为0.18微米的电路线。 英特尔首款微处理器4004的运行速率为108KHz,而现今的英特尔奔腾4处理器的初速率已经达到了1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13秒。   2001年:英特尔至强(Xeon)处理器   英特尔至强处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新操作系统和应用选择。与基于英特尔 奔腾III至强处理器的系统相比,采用英特尔至强处理器的工作站根据应用和配置的不同,其性能预计可提升30%到90%左右。该处理器基于英特尔NetBurst?? 架构,设计用于为视频和音频应用、高级互联网技术及复杂3D图形提供所需要的计算动力。   2001年:英特尔安腾(Itanium)处理器   英特尔安腾处理器是英特尔推出的64位处理器家族中的首款产品。该处理器是在基于英特尔简明并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。   2002年:英特尔安腾2处理器(Itanium2) Intel Pentium 4 /Hyper Threading处理器   英特尔安腾2处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。   英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达3.06GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超执行绪技术的 Intel Pentium4处理器时脉达到3.2GHz。   2003年:英特尔 奔腾 M(Pentium M) /赛扬 M (Celeron M)处理器   英特尔奔腾M处理器,英特尔855芯片组家族以及英特尔PRO/无线2100网卡是英特尔迅驰?? 移动计算技术的三大组成部分。英特尔迅驰移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。   2005年:Intel Pentium D 处理器   首颗内含2个处理核心的Intel Pentium D处理器登场,正式揭开x86处理器多核心时代。(绰号胶水双核,被别人这样叫是有原因的,PD由于高频低能噪音大,所以才有这个称号)   2005年:Intel Core处理器   这是英特尔向酷睿架构迈进的第一步。但是,酷睿处理器并没有采用酷睿架构,而是介于NetBurst和Core之间(第一个基于Core架构的处理器是酷睿2)。最初酷睿处理器是面向移动平台的,它是英特尔迅驰3的一个模块,但是后来苹果转向英特尔平台后推出的台式机就是采用的酷睿处理器。   酷睿使双核技术在移动平台上第一次得到实现。与后来的酷睿2类似,酷睿仍然有数个版本:Duo双核版,Solo单核版。其中还有数个低电压版型号以满足对节电要求苛刻的用户的要求。   2006年:Intel Core 2 (酷睿2,俗称“扣肉”)/ 赛扬 Duo 处理器   Core微架构桌面/移动处理器:桌面处理器核心代号Conroe。将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960(3.6GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含2.91亿个晶体管。移动处理器核心代号Merom。是迅驰3.5和迅驰4的处理器模块。当然这两种酷睿2有区别,最主要的就是将FSB由667MHz/533MHz提升到了800MHz。

3. 集成电路发展史

个人闲来无事是写的,现粘贴如下:
首先有集成电路这一想法的是英国科学家Dummer,那是在1952年,在皇家信号和雷达机构的一个电子元器件会议上他说:“随着晶体管的出现和对半导体的全面研究,现在似乎可以想象,未来电子设备是一种没有连接线的固体组件。”当然,那时还没有“集成电路”这一名词。然而,集成电路的真正发明却是在美国,是在6年之后的1958年(也有人认为是1959年,具体原因接下来解释)。
    1958年9月12日,TI的Kilby发明了世界首块集成电路,这是一个相移振荡器,集成了2个晶体管、2个电容和8个电阻——共12个元器件,该发明与1959年2月6日申请专利,1964年6月26日被批准。而到了1959年,Fairchild的Noyce发明了基于硅平面工艺的集成电路,1959年7月30日,Noyce为自己的发明申请了专利,1961年4月26日被批准。虽然Noyce比Kilby发明集成电路和申请专利在后,但批准在前,而且Noyce发明的集成电路更适合于大批量生产,所以会有一些人在关于谁先发明了集成电路的问题上产生了分歧。其实Kilby和Noyce被认为是集成电路共同的发明人,问题在于1958和1959不能被认为是共同的发明时间,而必须是其中的一个,我习惯于把它说成是1958年。
    而到了1968年,Noyce和Moore以及Fairchild的其他一些雇员成立了Intel,1971年便生产出了世界首枚CPU——集成了2300个晶体管的4004,紧接着,次年8008,再次年8080……尽管CPU诞生于1971年,然而它被推向市场,换句话说就是普通平民可以买到是1981年的事。那是1981年的8月12日,IBM推出型号为IBM5150的计算机,这是最早的PC,CPU采用Intel的8088(1979年发明),系统采用Microsoft的DOS,内存16K,再配一个5.25英寸的软驱,售价1565美元。但你知道,当时的1565美元跟现在的1565美元不一样,那时钱实啊,按照今天的物价指数,大约相当于现在的4000美元,在2011年8月13日这样的日子,汇率是6.3902,那就是25560.8元人民币。
    早期的IC未形成独立的产业,电子系统厂商把自己生产的IC用于自己的产品,只把一小部分销往市场,而同时也会从市场购进一些。Intel和AMD开创了IC业的新纪元,他们只向市场供应通用的IC,而不使用IC去生产产品,当然也不会从市场购进IC。这种自行设计、用自己的生产线制造、自己封装和测试、最后出售IC成品的厂商被称为IDM(Integrated Device Manufacture,集成器件制造商)。尽管如此,IDM还是有严格定义的:IC的对外销售额超过IC总产值25%的企业就可以称作是IDM了(如Motorola、TI、Sony),而没有超过的叫做系统厂商(如IBM、HP)。根据这一定义,IDM并不意味着不生产系统产品,系统厂商也并不意味着不生产IC。区别仅在于它们生产的IC(或者干脆没生产)有多少用于自己的系统产品,有多少用于直接出售。
    再后来,出现了一些这样的公司,它们只设计IC,并不生产,我们称之为Fabless,叫做无生产线设计公司。它们设计完成后,制造这一环节仍交给IDM完成,IDM的生产线除了生产自己设计的IC以外,还帮Fabless进行生产。1987年,TSMC(台台湾积体电路制造股份有限公司,台积电)成立,2000年,SMIC(中芯国际集成电路制造有限公司,中芯国际)成立,这些公司开创了一种新的模式,它没有自己的产品,不设计也不使用,只是单纯地提供制造服务,我们称之为Foundry。这类公司的出现,不仅Fabless的设计成果有了天经地义的归宿,而且就连IDM也把自己制造环节的一部分让给Foundry来做,就Foundry而言,有时它接到来自IDM的生产任务比Fabless的还要多。再后来呢?连封装测试也自成一家,形成独立的产业。
    纵观今天的IC业,设计业、制造业、封测业三足鼎立,当然也不乏IDM这样的一条龙式的企业,但是系统厂商在IC市场上的份额越来越低,(注意!我说的是在IC市场上),濒临灭绝!(注意!我说的是市场份额濒临灭绝。公司并没有灭绝,而是他们意识到这种自己生产芯片仅供自己使用的模式不划算,转型了。)

集成电路发展史

4. 有关于AMD的发展史,哪里有详细介绍

Duron 1600 
AMD 毒龙\接口类型:Socket 462\主频:1.6GHz\外频:133MHz\二级缓存容量:64KB\超线程技术:不支持
Duron 1800
AMD 毒龙\接口类型:Socket 462\主频:1.8GHz\外频:133MHz\二级缓存容量:64KB\超线程技术:不支持
Sempron 2200+
AMD Sempron\接口类型:Socket 462\主频:1.5GHz\外频:166MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 2400+
AMD Sempron\接口类型:Socket 462\主频:1.667GHz\外频:166MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 2500+
AMD Sempron\接口类型:Socket 462\主频:1.75GHz\外频:166MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 2600+
AMD Sempron\接口类型:Socket 462\主频:1.667GHz\外频:166MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 2800+
AMD Sempron\接口类型:Socket 462\主频:2.0GHz\外频:166MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 3100+
AMD Sempron\接口类型:Socket 754\主频:1.8GHz\外频:200MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 2600+(754Pin) 
AMD Sempron\接口类型:Socket 754\主频:1.6GHz\外频:200MHz\二级缓存容量:128KB\超线程技术:不支持 
Sempron 2800+(754Pin) 
AMD Sempron\接口类型:Socket 754\主频:1.6GHz\外频:200MHz\二级缓存容量:256KB\超线程技术:不支持 
Sempron 3000+(754Pin ) 
AMD Sempron\接口类型:Socket 754\主频:1.8GHz\外频:200MHz\二级缓存容量:128KB\超线程技术:不支持 
Athlon XP 2500+
AMD AthlonXP\接口类型:Socket 462\主频:1.83GHz\外频:166MHz\二级缓存容量:512KB\超线程技术:不支持 
Barton 2500+
AMD BartonXP\接口类型:Socket 462\主频:1.833GHz\外频:166MHz\二级缓存容量:512KB
Barton 2600+
AMD BartonXP\接口类型:Socket 462\主频:1.909GHz\外频:166MHz\二级缓存容量:256KB
Barton 2800+
AMD BartonXP\接口类型:Socket 462\主频:2.08GHz\外频:166MHz\二级缓存容量:512KB 
Barton 3000+
AMD BartonXP\接口类型:Socket 462\主频:2.158GHz\外频:166MHz\二级缓存容量:512KB 
Barton 3200+
AMD BartonXP\接口类型:Socket 462\主频:2.2GHz\外频:200MHz\二级缓存容量:512KB
Athlon 64 2800+
AMD Athlon 64\接口类型:Socket 754\主频:1.8GHz\外频:200MHz\二级缓存容量:512KB\超线程技术:不支持 
Athlon 64 3000+
AMD Athlon 64\接口类型:Socket 754\主频:2.0GHz\外频:200MHz\二级缓存容量:512KB\超线程技术:不支持 
Athlon 64 3200+
适用类型:台式机\系列型号:AMD Athlon 64\接口类型:Socket 754\主频:2.0GHz\外频:200MHz\二级缓存容量:1MB\超线程技术:不支持  
Athlon 64 3000+(939Pin) 
AMD Athlon 64\接口类型:Socket 939\主频:1.8GHz\外频:200MHz\二级缓存容量:512KB\超线程技术:不支持 
Athlon 64 3200+(939Pin) 
AMD Athlon 64\接口类型:Socket 939\主频:2.0GHz\外频:200MHz\二级缓存容量:512KB\超线程技术:不支持 
Athlon 64 3500+(939Pin) 
AMD Athlon 64\接口类型:Socket 939\二级缓存容量:512KB\超线程技术:不支持
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MP-2400+
适用类型:服务器\系列型号:AMD AthlonMP\接口类型:Socket 462\主频:2.0GHz\外频:133MHz\二级缓存容量:256KB\超线程技术:不支持  
MP-2600+
适用类型:服务器\系列型号:AMD AthlonMP\接口类型:Socket Socket 462\主频:2.13GHz\外频:133MHz\二级缓存容量:256KB\超线程技术:不支持  
Opteron-240
适用类型:服务器\系列型号:AMD Opteron\接口类型:Socket 940\主频:1.4GHz\外频:400MHz\二级缓存容量:1MB\超线程技术:不支持 
Opteron-244
适用类型:服务器\系列型号:AMD Opteron\接口类型:Socket 940\主频:1.8GHz\外频:400MHz\二级缓存容量:1MB\超线程技术:不支持

5. AMD显卡发展史

一楼的答案不全,我接上
  2006年 7月 24日 ATi被AMD公司以54亿美元收购。  
 2007年 6月 ATi发布自己的第一款支持DX10的显卡——HD2900XT,采用512-bit位宽显存,成为当时显存位宽最大的显卡。显存带宽超过128.5GB/s,是当时显存带宽最大的显卡。同时拥有320个超标量流处理器,成为当时单个流处理器数量最多的显卡。核心集成7亿个晶体管,成为当时集成晶体管数量最多的显卡。   
  2007年 11月 ATi发布业界第一款支持DirectX10.1、Shader Model4.1的显卡——HD3800系列,同时,这也是业界第一款以55nm工艺制造的显卡。   HD3000系列以来,AMD-ATi改变命名策略,“xx50”代表较低级的显卡,“xx70”代表较高级的显卡。   ATi改变产品策略,研发主力转向主流市场。   
  2008年 1月 ATi发布HD3870X2,是业界首款单卡双芯的显卡解决方案,成为当时的单卡性能王者。   上半年 ATi发布了Mobility Radeon HD3800 系列显卡,表明AMD-ATi将主流级显卡带入移动市场的决心。   
         6月 ATi发布了基于RV770核心的HD4800系列显卡,有800个超标量流处理器,成为当时单个流处理器最多的显卡,集成9.56亿个晶体管。其中4870是业界首款使用GDDR5显存的显卡。HD4870拥有业界第一1.2TFlops的浮点运算能力。HD4800系列出众的性价比在一些国家甚至一度脱销。   
         8月12日 ATi发布4870X2与4850X2,这是AMD-ATi第二次发布单卡双芯解决方案。发布第二代节能技术PowerPlay2.0。

AMD显卡发展史

6. AMD公司CPU的发展史

超威半导体(AMD,Advanced Micro Devices, Inc.),是一家集成电路的设计和生产公司,成立于1969年,专为电脑、通信及电子消费类市场供应各种芯片产品,其中包括用于通信及网络设备的微处理器、闪存以及基于硅片技术的解决方案等。总公司设于美国加州硅谷内森尼韦尔,除了在世界各大城市设有办事处之外,还在美国、欧洲、日本及亚洲等地设有生产中心。公司有超过 70% 的收入来自国际市场,是一家真正意义上的跨国公司。公司在美国纽约股票交易所上市,代号为AMD。

AMD是目前唯一可与Intel匹敌的CPU厂商。AMD出品之CPU的特点是以较低的核心时脉频率产生相对上较高的运算效率,其主频通常会比同效能的Intel CPU低1GHz左右。自从Athlon XP上市以来,AMD与Intel的技术差距逐渐缩小。而在2003年时AMD抢先于Intel之前发表了具有64位元寻址的Athlon 64中央处理器,使得AMD的技术已经与Intel相当,或甚至在某些方面已经领先于Intel。在2005年时AMD追随Intel的脚步发布了拥有两个核心的中央处理器——Athlon 64 X2,该系列产品与Intel稍后推出的Core 2系列改良版双核心处理器,是目前PC用CPU里面效能最佳的两套系统。而由于两家厂商目前都是以双核心系统作为新产品的开发主轴,使得AMD的Athlon 64 FX-57成为世界上最快的单核心民用中央处理器(其他效能更高的产品都是采用双核心架构)。

AMD 年表
1969年,5月1日公司成立。 
1970年,Am2501开发完成。 
1972年,9月开始生产晶圆,同年发行股票。 
1973年,1月第一个生产基地落成在马来西亚。 
1975年,AM9102进入RAM市场。 
1976年,与Intel公司签署专利相互授权协议。 
1977年,与西门子公司创建AMC公司。 
1978年,一个组装生产基地的落成在马尼拉。同年AMD公司年营业额达1亿美元。 
1979年,股票在纽约上市,奥斯丁生产基地落成。 
1981年,AMD制造的芯片被用于的建造航天飞机,同年决定与Intel公司扩大合作。 
1982年,新式生产线(MMP)开始投入使用。 
1983年,新加坡分公司成立,同年推出INT.STD.1000质量标准。 
1984年,曼谷生产基地建设并扩建奥斯丁公厂。 
1985年,被列入财富500强。同年启动自由芯片计划。 
1986年,10月,AMD公司首次裁员。 
1987年,索尼公司合作生产CMOS芯片,4月向INTEL提起诉讼,这场官事持的续5年,以AMD胜诉告终。 
1988年,10月SDC基地开始动工。 
1990年,5月Rich Previte成为公司的总裁兼首席执行官。 
1991年,3月生产AM386 CPU。 
1992年,2月AMD对Intel法律诉讼结束,AMD胜诉,获得生产386处理器的资格。 
1993年,4月开始生产闪存,同月,推出AM486 
1994年,1月AMD与康柏公司合作,并供应AM485型 CPU。 
1995年,Fab 25建成。 
1996年,AMD收购NexGen。 
1997年,AMD-K6出品。 
1998年,K7处理器发布。 
1999年,Athlon处理器问世。 
2000年,AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录,同年Fab 30开始投入生产。 
2001年,AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。 
2002年,AMD收购Alchemy Semiconductor。 
2003年,AMD 推出面向服务器Opteron(皓龙) 处理器,同年9月,推出第一款桌面级的64位微处理器。 
2006年,AMD发布了Socket AM2,以取代Socket 754和Socket 939。 
2006年,7月24日,AMD收购ATi 

[编辑] AMD CPU年表
1989年 Am386SX/DX 
1993年 Am486 
1996年 K5 
1997年4月 K6 
1998年 K6-ii 
1999年2月 K6-iii 
1999年6月 K7 Athlon 
2001年10月 K7 Palomino 核心 Athlon XP 
2004年1月 K7 Barton 核心 Athlon XP 
2004年9月 K8 Socket 754 Athlon 64, Socket 940 Athlon 64 FX 
2004年7月 K8 Sempron 
2004年6月 K8 Socket 939 Athlon 64 
2005年3月 K8 Socket 754 Turion 64 
2005年4月 K8 Athlon 64 X2 Dual-core 
2006年5月 K8 Socket AM2 Athlon 64, Socket S1 Turion 64 X2 
2006年8月 K8 Socket F Opteron 

[编辑] 产品评价
AMD处理器产品特点可分为三个阶段:


[编辑] 第一阶段
80486至K6阶段。初期的产品策略主要是以较低廉的产品价格为诉求,虽然最高性能不若同期的Intel产品,但却拥有较佳的价格性能比。


[编辑] 第二阶段
K7阶段。K7的性能尤其是在浮点运算能力方面,受到不少DIY(自行组装电脑)用户的欢迎。由于相对于Intel,AMD对于CPU的倍频锁定限制较松,因此广受许多超频用户的欢迎。但也由于缺乏过热保护,超频过度的K7系列CPU有较高的烧毁风险,导致部分消费者对其稳定度的信心偏低。


[编辑] 第三阶段
K8阶段。由于率先于Intel之前优先投入64位元CPU的市场,使得AMD在64位元CPU的领域有比较早发展的优势,此阶段的AMD产品仍采取了一贯的低主频高性能策略,解决因为电气性能有限导致CPU不稳定和发热量、耗电功率过大的问题。


[编辑] 产品线
Athlon 64 
Sempron 
Turion 64 
Opteron 
Geode 
AMD的产品线中,大致分为 Sampron、Athlon 64 与 Athlon FX三大系列

Sampron 属于较低阶配备,工作频率低,但温度相对低很多。

Athlon 64 X2 属于双核心技术,适用于要处理多工作的使用者。

Athlon FX 属于单核心技术,执行效能较高,虽然不具备多线程处理能力,但对多媒体处理、3D游戏,FX系列是最佳的选择。


[编辑] ATI
超威于2006年7月24日(GMT+8)宣布以54亿美元全面并购ATi,到2006年7月底并购工作已经开始,原ATi的研发中心都已开始人事变动,AMD和ATi在等待来自联邦法院的裁决,认定该兼并生效。

ATi公司是一家致力于开发图形处理芯片的公司,其影雷系列显示芯片是民用图形显示市场上占据较大份额的芯片之一。除显示芯片之外,ATI最近还开发主板控制芯片。有人认为,AMD并购ATi就是为了期望拥有自主主板控制芯片研发能力,不再受制于台湾的芯片厂商和Nvidia。但是有人担心,兼并ATi后,在图形芯片领域AMD和Nvidia最终会从现在的合作走向竞争。

7. AMD CPU的发展史?

AMD处理器19742019年发展史,肯定有一款CPU是你用过的

AMD CPU的发展史?

8. amd cpu发展史?

AMD CPU 的核心类型 

1) Athlon XP 的核心类型 

Athlon XP 有 4 种不同的核心类型,但都有共同之处:都采用 Socket A 接口,而且都采用 PR 标称值标注。 

2) Palomino 

这是最早的 Athlon XP 的核心,采用 0.18um 制造工艺,核心电压为 1.75V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz。 

3) Thoroughbred 

这是第一种采用 0.13um 制造工艺的 Athlon XP 核心,又分为 Thoroughbred-A 和 Thoroughbred-B 两种版本,核心电压 1.65V-1.75V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 266MHz 和 333MHz。 

4) Thorton 

采用 0.13um 制造工艺,核心电压 1.65V 左右,二级缓存为 256KB,封装方式采用 OPGA,前端总线频率为 333MHz。可以看作是屏蔽了一半二级缓存的 Barton。 


5) Barton 

采用 0.13um 制造工艺,核心电压 1.65V 左右,二级缓存为 512KB,封装方式采用 OPGA,前端总线频率为 333MHz 和 400MHz。 


(三)新 Duron 的核心类型 

AppleBred 

采用 0.13um 制造工艺,核心电压 1.5V 左右,二级缓存为 64KB,封装方式采用 OPGA,前端总线频率为 266MHz。没有采用 PR 标称值标注,而以实际频率标注,有 1.4GHz、1.6GHz 和 1.8GHz 三种。 


(四)Athlon 64 系列 CPU 的核心类型 

1) Sledgehammer 

Sledgehammer 是 AMD 服务器 CPU 的核心,是 64 位的 CPU,一般为 940 接口,采用 0.13 微米工艺。Sledgehammer 的功能强大,集成三条 HyperTransprot 总线,核心使用 12 级流水线,128K 一级缓存、集成 1M 二级缓存,可以用于单路到 8 路 CPU 服务器。Sledgehammer 集成内存控制器,比起传统上位于北桥的内存控制器有更小的延时,支持双通道 DDR 内存,由于是服务器 CPU,当然支持 ECC 校验。 

2) Clawhammer 

采用 0.13um 制造工艺,核心电压 1.5V 左右,二级缓存为 1MB,封装方式采用 mPGA,采用 Hyper Transport 总线,内置一个 128bit 的内存控制器。采用 Socket 754、Socket 940 和 Socket 939 接口。 

3) Newcastle 

其与 Clawhammer 的最主要区别,就是二级缓存降为 512KB(这也是 AMD 为了市场需要和加快推广 64 位 CPU 而采取的相对低价政策的结果),其它性能基本相同。 

4) Wincheste 

Wincheste 是比较新的 AMD Athlon 64 CPU 核心,是 64 位的 CPU,一般为 939 接口,0.09 微米制造工艺。这种核心使用 200MHz 外频,支持 1GHyperTransprot 总线,512K 二级缓存,性价比较好。Wincheste 集成双通道内存控制器,支持双通道 DDR 内存,由于使用新的工艺,Wincheste 的发热量比旧的 Athlon 小,性能也有所提升。 

5) Troy 

Troy 是 AMD 第一个使用 90nm 制造工艺的 Opteron 核心。Troy 核心是在 Sledgehammer 基础上增添了多项新技术而来的,通常为 940 针脚,拥有 128K 一级缓存和 1MB (1024 KB)二级缓存。同样使用 200MHz 外频,支持 1GHyperTransprot 总线,集成了内存控制器,支持双通道 DDR 400 内存,并且可以支持 ECC 内存。此外,Troy 核心还提供了对 SSE-3 的支持,和 Intel 的 Xeon 相同。总的来说,Troy 是一款不错的 CPU 核心。 

6) Venice 

Venice 核心是在 Wincheste 核心的基础上演变而来,其技术参数和 Wincheste 基本相同:一样基于 X86-64 架构、整合双通道内存控制器、512KB L2 缓存、90nm 制造工艺、200MHz 外频,支持 1GHyperTransprot 总线。Venice 的变化主要有三方面:一是使用了 Dual Stress Liner(简称 DSL)技术,可以将半导体晶体管的响应速度提高 24%,这样 CPU 有更大的频率空间,更容易超频;二是提供了对 SSE-3 的支持,和 Intel 的 CPU 相同;三是进一步改良了内存控制器,一定程度上增加处理器的性能,更主要的是增加内存控制器对不同 DIMM 模块和不同配置的兼容性。此外 Venice 核心还使用了动态电压,不同的 CPU 可能会有不同的电压。 

7) SanDiego 

SanDiego 核心与 Venice 一样,是在 Wincheste 核心的基础上演变而来,其技术参数和 Venice 非常接近,Venice 拥有的新技术、新功能,SanDiego 核心一样拥有。不过 AMD 公司将 SanDiego 核心定位到顶级 Athlon 64 处理器之上,甚至用于服务器 CPU。可以将 SanDiego 看作是 Venice 核心的高级版本,只不过缓存容量由 512KB 提升到了 1MB。当然,由于 L2 缓存增加,SanDiego 核心的内核尺寸也有所增加,从 Venice 核心的 84 平方毫米增加到 115 平方毫米,当然价格也更高昂。 


(五)闪龙系列 CPU 的核心类型 

1) Paris 

Paris 核心是 Barton 核心的继任者,主要用于 AMD 的闪龙,早期的 754 接口闪龙部分使用 Paris 核心。Paris 采用 90nm 制造工艺,支持 iSSE2 指令集,一般为 256K 二级缓存,200MHz 外频。Paris 核心是 32 位 CPU,来源于 K8 核心,因此也具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。使用 Paris 核心的闪龙与 Socket A 接口闪龙 CPU 相比,性能得到明显提升。 

2) Palermo 

Palermo 核心目前主要用于 AMD 的闪龙 CPU,使用 Socket 754 接口、90nm 制造工艺,1.4V 左右电压,200MHz 外频,128K 或者 256K 二级缓存。Palermo 核心源于 K8 的 Wincheste 核心,不过是 32 位的。除了拥有与 AMD 高端处理器相同的内部架构,还具备了 EVP、Cool'n'Quiet;和 HyperTransport 等 AMD 独有的技术,为广大用户带来更“冷静”、更高计算能力的优秀处理器。由于脱胎与 ATHLON 64 处理器,所以,Palermo 同样具备了内存控制单元。CPU 内建内存控制器的主要优点,在于内存控制器可以以 CPU 频率运行,比起传统上位于北桥的内存控制器有更小的延时。 


(六)双核心类型 

在2005年以前,主频一直是两大处理器巨头 Intel 和 AMD 争相追逐的焦点。而且处理器主频也在 Intel 和 AMD 的推动下,达到了一个又一个的高峰。就在处理器主频提升速度的同时,也发现在目前的情况下,单纯主频的提升,已经无法为系统整体性能的提升带来明显的好处,并且高主频带来了处理器巨大的发热量。更为不利是,Intel 和 AMD 两家在处理器主频提升上已经有些力不从心了。在这种情况下,Intel 和 AMD 都不约而同地将目光投向了多核心的发展方向。在不用进行大规模开发的情况下,将现有产品发展成为理论性能更为强大的多核心处理器系统,无疑是相当明智的选择。 

双核处理器就是基于单个半导体的一个处理器上拥有两个一样功能的处理器核心,即是将两个物理处理器核心整合入一个内核中。事实上,双核架构并不是什么新技术,不过此前双核心处理器一直是服务器的专利,现在已经开始普及之中.
最新文章
热门文章
推荐阅读