什么是量子计算机?

2024-05-07 19:01

1. 什么是量子计算机?


什么是量子计算机?

2. 量子计算机是什么?

量子计算机 

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。 

20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。 

无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。 

迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。

3. 什么是量子计算机?


什么是量子计算机?

4. 量子计算机是什么

量子计算机技术涉及利用量子粒子作为一个替代位今天的电脑。 该理论的量子计算机始于20年前与保罗贝尼奥夫,物理学家在阿贡国家实验室,谁使用的概念图灵机作为一种模式的量子计算机。 一个图灵机组成的一盘磁带无限期长度可分为大小均匀广场。 装置能阅读的空白和符号,在磁带是用来指示一台机器,使某一特定程序可以完成。 

基本理论量子计算机 
量子计算机利用量子粒子的“磁带”的图灵实验。 由于存在一个符号或一个空白的图灵机的磁带,象征二进制数字,所以可以状况的量子粒子被用来举行这些价值观。 使用多量子粒子也意味着,量子计算机将大大快于图灵机,因为它可以执行数计算同时进行。 

此外,与今天的电脑使用的基本位其中只有两个国家( 1或0 ) ,量子计算机存储信息的量子位能容纳两个以上的价值。 这种能力的量子位存在于两个以上国家意味着量子计算机有能力的表演超过了100万计算同时在同一时间和潜力,有很多更快和功能更强大很多比今天的超级计算机。 

量子计算机还可以利用另外一个重要特点量子粒子被称为纠缠。 财产的纠缠可以转让,并确定价值或自旋的量子粒子通过引入外部力量。 

发展量子计算机 
虽然量子粒子可用于制造计算机,量子计算机仍然远远没有成为现实,大部分的研究是理论。 迄今为止,科学家一直无法操纵超过7量子位在解决数学公式。 有这方面的事态发展,然而,最引人注目的有: 

试验于2000年8月的研究人员在IBM 
阿尔马登研究中心能够使细胞核的五个氟原子相互作用的量子位利用磁共振成像和无线电频率脉冲。 这个实验证明是成功的解决了复杂的数学问题,以便找到所谓(确定时期的一个函数)的一个步骤。 今天的计算机能够解决同样的问题只有通过反复循环。 

同一年试验,洛斯阿拉莫斯国家实验室 
研究人员已经能够建立一个7量子位量子计算机,采用核磁共振影响粒子在原子核中的分子跨巴豆流体(液体由四个碳原子和6个氢原子) 。 核磁共振用线的粒子虽然应用电磁脉冲模仿位信息编码过程的数字化电脑。

5. 什么是量子计算机呢?

十万个冷知识

什么是量子计算机呢?

6. 量子计算机是什么?

量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。
量子计算机工作原理
普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。[1] 
想象一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们已经完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。[1] 
从数学抽象上看,量子计算机执行以集合为基本运算单元的计算,普通计算机执行以元素为基本运算单元的计算(如果集合中只有一个元素,量子计算与经典计算没有区别)。[1] 
以函数y=f(x),x∈A为例。量子计算的输入参数是定义域A,一步到位得到输出值域B,即B=f(A);经典计算的输入参数是x,得到输出值y,要多次计算才能得到值域B,即y=f(x),x∈A,y∈B。[1] 
量子计算机有一个待解决的问题,即输出值域B只能随机取出一个有效值y。虽然通过将不希望的输出导向空集的方法,已使输出集B中的元素远少于输入集A中的元素,但当需要取出全部有效值时仍需要多次计算。

7. 量子计算机是计算机吗?

量子计算机从本质上说,并不是单纯指计算机。它是通过量子的原理来进行方案的选择、问题的对比分析,比计算机更加的快捷可靠。
量子计算机每年都在那个研究上花费大量的资金。 一般人注意到这个领域正在被研究,但真正意识到其背后的复杂性和工作原理的人很少。 本文旨在提供相关原理、面临的问题以及解决这些问题的解决方案的基本概要。 基本上,量子计算是利用叠加和纠缠等量子力学现象来执行计算的。

量子计算领域实际上是量子信息科学的子领域,包括量子密码学和量子通信。 量子计算始于1980年代初。 当时理查德费曼和尤里曼宁提出量子计算机有可能模拟古典计算机无法模拟的东西。 量子比特是量子计算的基础,类似于古典计算机的比特。 量化比特可以处于1或0量化状态。
 
今天的物理量子计算机噪声很大,量子误差校正是一个新的研究领域。 遗憾的是,现有的硬件噪声太大,容错量子计算依然是一个相当遥远的梦想。 截至2019年4月,大型可扩展的量化硬件尚未展示,对现在的小型吵闹的量化计算机还没有发表商业上有用的算法。 政府、老字号公司和初创企业在量子计算方面的投资越来越多。 无论是最近的中型装置的应用,还是量子至上的论证,都在学术界和工业界得到了积极的探索。

 量子计算机利用量子力学中的一些接近神秘的现象,在处理能力方面实现了巨大的飞跃。 量子设备有望超过现在乃至未来最有能力的超级计算机。 他们不会毁灭传统的电脑。 为了解决很多问题,使用经典机器仍然是最简单经济的解决办法。 但是量子计算机在材料科学和药物研究等各种领域有望取得令人振奋的进展。 有些公司已经用这些进行实验,开发更轻、更强大的电动汽车电池,支持新药的开发。

量子计算机是计算机吗?

8. 量子计算机是怎样的?

量子计算机不同于我们平时有的计算机。它是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。如果某个装置处理和计算的是量子信息,运行的是量子算法,那么它就是量子计算机。
这种量子计算机的概念源于对可逆计算机的研究。科学家们研究可逆计算机的目的是为了解决计算机中的能耗问题。还是先了解一下什么是量子计算机吧!
对于现在,我们使用的电子计算机集成电路的集成度,大约以每3年翻两番的速度发展。1990年制成了64兆位的动态随机存储器,集成电路的线宽已细到0.3微米。1993年制成了256兆位的动态随机存储器。当存储器达到1024兆位时,集成电路的线宽将细到0.1微米,也就是千万分之一米,它差不多是一根头发丝的千分之一。这么细的电路,被认为是集成电路的发展极,如果电路比这更细时,现有电子元件将会失去工作的理论基础,因为电子作为一种微小粒子,具有“波粒二象性”,当电路线宽大于0.1微米时,电子完全可视为粒子,而不必考虑其波动性;而当电路线宽小于0.1微米时,那么就必须考虑电子的波动性。与此同时还会出现种种新的物理现象,称为量子效应。利用量子效应工作的电子元件就被称为量子元件。
现在的电子元件是通过控制所通过的电子数量多少或有无来进行工作的。宏观上,电子计算用电位的高低来表示0和1以进行存储和计算。而量子元件则通过控制粒子波动的相位来实现输出信号的强弱和有无,量子计算机通过利用粒子的量子力学效应,如光子的极化,原子的自旋等来表示0和1以进行存储和计算。量子元件的使用将使计算机的工作速度大大提高(约可提高1000倍),功耗大大减少(约可减少1000倍),电路大大简化且不易发热,体积大大缩小。
量子计算机,最早是由理乍得·费曼提出的,一开始是从物理现象的模拟而来的。可是,他发现当模拟量子现象时,因为庞大的希尔伯特空间而使资料量也变得庞大。一个完好的模拟所需的运算时间则变得相当可观,甚至是不切实际的天文数字。理乍得·费曼当时就想到如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减少,比现行计算机要快得多。正是它的这一特点吸引了大批科学家参与开发研究。量子计算机的概念也由此而诞生以及被人注意。
早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的
日本日立制作所开发研究成功了一种量子元件——“单个电子晶体管”,它可以控制单个电子的运动。这种晶体管不仅体积小,而且功耗特别低,比目前功耗最小的晶体管低约1000倍。日本富士通公司正在开发量子元件超高密度存储器,在1平方厘米面积的芯片上,可存储10万亿比特的信息,相当于可存储6000亿个汉字。美国物理学家翰逊博士开发成功的电子自旋晶体管,很有可能将集成电路的线宽降至0.01微米。在一个小小的芯片上可容纳数万亿个晶体管,从而使集成电路的集成度大大提高。利用量子力学原理设计,由量子元件组装的量子计算机。它不仅运算速度快,存储量大、功耗低,而且体积也会大大缩小。一个超高速计算机可以直接放在口袋里,人造卫星的直径可以从数米减小到数十厘米。
量子计算机它可以进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式。在利用EPR对进行量子通讯的实验中中我们发现,只有拥有EPR对的双方才可能完成量子信息的传递,任何第三方的窃听者都不能获得完全的量子信息,正所谓解铃还需系铃人,这样实现的量子通讯才是真正不会被破解的保密通讯。此外量子计算机还可以用来做量子系统的模拟,人们一旦有了量子模拟计算机,就无需求解薛定愕方程或者采用蒙特卡罗方法在经典计算机上做数值计算,便可精确地研究量子体系的特征。
量子计算机是通过量子分裂式、量子修补式来进行一系列的大规模高精确度的运算的。其浮点运算性能是普通家用电脑的CPU所无法比拟的,量子计算机大规模运算的方式其实就类似于普通电脑的批处理程序,其运算方式简单来说就是通过大量的量子分裂,再进行高速的量子修补,但是其精确度和速度也是普通电脑望尘莫及的,因此造价相当惊人。目前唯一一台量子计算机仍在微软的硅谷老家中,尚在试验阶段,离投入使用还会有一段时间。量子计算机当然不是给我们用来玩电子游戏的,因为这好比拿激光切割机去切纸大材小用。它的主要用途是例如象测量星体精确坐标、快速计算不规则立体图形体积、精确控制机器人或人工智能等需要大规模、高精度的高速浮点运算的工作。但是在运行这一系列高难度运算的背后,是可怕的能量消耗、不怎么长的使用寿命和恐怖的热量。假如1吨铀235通过核发电机1天能提供7000万瓦伏电量,但这些电量在短短的10天就会被消耗殆尽,当然这也只是最保守的估计;试想如果一台量子计算机一天工作4小时左右,那么它的寿命将只有可怜的2年,如果工作6小时以上,恐怕连1年都不行,这也是最保守的估计;假定量子计算机每小时有70摄氏度,那么2小时内机箱将达到200度,6小时恐怕散热装置都要被融化了,这也还只是最保守的估计!
所以由此看来,高能短命的量子计算机恐怕离我们的生活还有一段漫长的距离,那么就让我们一起迎着未来的曙光拭目以待吧!
我们现在使用的计算机可以说是够高科技的,没想到科学家们还能研发出更为高科技的电子产品,这对于我们未来的生活来说是一种有益的帮助。只有科技不断进步,我们的社会也才会跟着不断的进步。对于未来的世界,我们有的是更多的期盼吧!