有人说直线是半径无穷大的圆,你是否认同这个理论?

2024-05-17 16:56

1. 有人说直线是半径无穷大的圆,你是否认同这个理论?

在数字的一些场合中,这一说法是完全的正确的,例如在射影几何之中,平行线是半径无穷的圆,及其平行线相交于无限远方全是合理的叙述,而射影几何属于欧式几何的一部分。“平行线是半径无穷的圆”——这一叙述表层上看上去好像有一些大道理,可是总感觉哪不对,因此很多人最先会把这个说法当做问题的。

事实上,在射影几何之中,这一结果不但是合理的,并且还越来越非常关键,相近的叙述也有“平行线相交于无穷远”。在射影几何之中,有一个非常漂亮的基本原理——对偶原理,指在平面图射影几何之中,大家把一个定律之中的对偶原素交换,相对性应的特性也更换后,获得的出题仍然创立;例如“点”和“平行线”、“直线”和“平面图”便是对偶原素。

罗巴切洛夫斯基在最开始根据结构“非欧几何”来证实欧几里得第五公设的确是公理并非定律时,结构了一个用传统式欧氏几何更新改造的几何图形室内空间,合乎欧几里得的前4条公设但不符第五公设(平行公理),罗巴切洛夫斯基证实了该几何图形室内空间是自洽的,进而证实了第五公设针对欧几里得几何图形是必不可少,也不能被别的公理所推论出的。罗巴切洛夫斯基所结构的这一室内空间里。

就把垂直和圆(严苛的说是X射线和半圆形)彻底统一起来了。平行线便是圆心点在无穷远点的圆,这一定义确实是被数学课广泛采取的。从立体几何的角度观察,直线方程自身就等额的于圆方程的一种极限值方式。初中数学常常科学研究转换下的不变,例如在拓扑结构转换中,圆、三角形、方形全是等额的的。这种见解在现实世界中看见的确不科学,但在初中数学却很有意思。

有人说直线是半径无穷大的圆,你是否认同这个理论?

2. 直线是半径无穷大的圆,这是真的吗?

直线是半径无穷大的圆,这一观点在射影几何学中是正确的。
 
当一个圆的半径无穷大,其周长也是无穷大,圆周上任意两点之间的弧无穷长,弧上任意一点的曲率都为0,就是说该圆弧无限接近于一条直线。而直线也无穷长,因此认为它们是等价的。同样,我们可以认为直线的曲率处处为0,它的曲率半径无穷大。
 
举个例子。我们的直觉告诉我们地面是平的,实际上当我们离地面足够远时,就会发现地面其实是弯曲的。如果地球的半径无穷大,不管你在哪个观察点,都只会发现地面是平的。
 
射影几何研究几何图形在射影变换下依然保持不变的图形性质。射影其实就是投影的意思,比如中心投影和平行投影,因此射影几何又被叫做投影几何。

所谓的射影变换就是利用中心投影或者平行投影将一个图形变换为另一个图形。在数学中大家最常见的有全等变换和相似变换,此外还有射影变换、仿射变换、拓扑变换等。
 
由于绘画和建筑学的需要,古希腊时期的学者就已经开始研究投影,并诞生了几何透视法。基于对中心投影的研究,在17世纪,射射影几何学正式建立,成为了几何学的一个分支。由于其研究范围狭窄,内容很有限。19世纪以后,随着群概念的引入,射影几何又充满了生机。
      
 
射影几何学中引入了无穷远点、无穷远直线、无穷远平面的概念。而射影几何学的奠基人是帕斯卡和笛沙格,画法几何创始人蒙日的学生彭赛列对射影几何的贡献也非常大。
 
在射影几何学中,因为引入了无穷的概念,直线被看作是半径无穷大的圆,而圆的切线被看作是割线的极限。平面几何中认为平行线永不相交,射影几何则认为平行线相交于无穷远点。基于该观点,就可以用中心投影来取代平行投影了。
      
 
如上图所示,实际上平行的铁轨在我们的视线下却是相交的。
 
而对偶原理是射影几何的基本原理,它将点和直线看作对偶元素,直线上取一点和过一点作一条直线被称之为对偶运算。前面说的是平面,在立体空间中点和平面则是对偶元素。在射影空间中,如果一个命题是正确的,其对偶命题也是正确的。文学中就有对偶的概念 。对偶的概念与对称的概念类似,就是说两个概念之间具有很强的关联性,如电和磁。
 
数学中经常研究变换下的不变性,比如在拓扑变换中,圆、三角形、正方形都是等价的。这些观点在现实世界中看着确实不合理,但在数学中却很有趣。
 
数学是最基本的科学工具,热爱科学的朋友,欢迎关注我。

3. 直线是半径无穷大的圆,这是真的吗?

直线是半径无穷大的圆,这一观点在射影几何学中是正确的。
当一个圆的半径无穷大,其周长也是无穷大,圆周上任意两点之间的弧无穷长,弧上任意一点的曲率都为0,就是说该圆弧无限接近于一条直线。而直线也无穷长,因此认为它们是等价的。同样,我们可以认为直线的曲率处处为0,它的曲率半径无穷大。
举个例子。我们的直觉告诉我们地面是平的,实际上当我们离地面足够远时,就会发现地面其实是弯曲的。如果地球的半径无穷大,不管你在哪个观察点,都只会发现地面是平的。
射影几何研究几何图形在射影变换下依然保持不变的图形性质。射影其实就是投影的意思,比如中心投影和平行投影,因此射影几何又被叫做投影几何。

所谓的射影变换就是利用中心投影或者平行投影将一个图形变换为另一个图形。在数学中大家最常见的有全等变换和相似变换,此外还有射影变换、仿射变换、拓扑变换等。
由于绘画和建筑学的需要,古希腊时期的学者就已经开始研究投影,并诞生了几何透视法。基于对中心投影的研究,在17世纪,射射影几何学正式建立,成为了几何学的一个分支。由于其研究范围狭窄,内容很有限。19世纪以后,随着群概念的引入,射影几何又充满了生机。

射影几何学中引入了无穷远点、无穷远直线、无穷远平面的概念。而射影几何学的奠基人是帕斯卡和笛沙格,画法几何创始人蒙日的学生彭赛列对射影几何的贡献也非常大。
在射影几何学中,因为引入了无穷的概念,直线被看作是半径无穷大的圆,而圆的切线被看作是割线的极限。平面几何中认为平行线永不相交,射影几何则认为平行线相交于无穷远点。基于该观点,就可以用中心投影来取代平行投影了。

如上图所示,实际上平行的铁轨在我们的视线下却是相交的。
而对偶原理是射影几何的基本原理,它将点和直线看作对偶元素,直线上取一点和过一点作一条直线被称之为对偶运算。前面说的是平面,在立体空间中点和平面则是对偶元素。在射影空间中,如果一个命题是正确的,其对偶命题也是正确的。文学中就有对偶的概念 。对偶的概念与对称的概念类似,就是说两个概念之间具有很强的关联性,如电和磁。
数学中经常研究变换下的不变性,比如在拓扑变换中,圆、三角形、正方形都是等价的。这些观点在现实世界中看着确实不合理,但在数学中却很有趣。
数学是最基本的科学工具,热爱科学的朋友,欢迎关注我。

直线是半径无穷大的圆,这是真的吗?

4. 直线是半径无穷大的圆,平行线相交于无穷远的说法正确吗?

直线是半径无穷大的圆,这一观点在射影几何学中是正确的。
当一个圆的半径无穷大,其周长也是无穷大,圆周上任意两点之间的弧无穷长,弧上任意一点的曲率都为0,就是说该圆弧无限接近于一条直线。而直线也无穷长,因此认为它们是等价的。同样,我们可以认为直线的曲率处处为0,它的曲率半径无穷大。比如在射影几何当中,直线是半径无穷大的圆,以及平行线相交于无穷远处都是正确的描述,而射影几何属于欧式几何的一部分。
“直线是半径无穷大的圆”——这个描述表面上看起来似乎有些道理,但是总觉得哪不对,于是很多人首先会把这个说法当成错误的。

实际上,在射影几何当中,这个结论不仅是正确的,而且还变得相当重要,类似的描述还有“平行线相交于无穷远”。
在射影几何当中,有一个非常漂亮的原理——对偶原理,指在平面射影几何当中,我们把一个定理当中的对偶元素互换,相对应的性质也替换后,得到的命题依然成立;比如“点”和“直线”、“直线”和“平面”就是对偶元素。

而“过两点只能做一条直线”和“两条线只能交于一点”就属于对偶的两个定理,对偶原理非常强大,对于射影几何中的任何定理,利用对偶原理之后都可以得到一个全新的定理,比如1640年法国数学家发现了著名的六边形定理:

Pascal六边形定理:如果一个六边形内接于一条圆锥曲线,则该六边形的三对对边的交点共线。
然后在一百多年后的1806年,一位法国大学生布列安桑,发现了另外一个著名的六边形定理:
Brianchon六边形定理:如果一个六边形的六条边都和一条圆锥曲线相切,则该六边形的三对顶点的连线相交于一点。
如果我们不使用对偶原理,那么后一个六边形定理的证明将会变得十分复杂,一旦有了对偶原理,我们利用Pascal六边形定理得到后者只需要几分钟而已,这种数学原理之间的对称性相当美妙。
但是问题在于,我们在使用对偶原理时,必须接受“平行线相交于无穷远”这个描述,如果我们不承认这个描述,那么我们使用对偶原理时将会出现很多例外,一旦我们接受了这个描述,对偶原理将没有任何例外。

同样,关于“直线是半径无穷大的圆”,也是射影几何当中使用的正确描述,我们在使用对偶原理时也必须承认这个假设成立。

射影几何只是欧式平面几何的一部分,虽然对偶原理仅限于在射影几何中使用,但是对偶原理的思想在很多地方都有遇到,比如电磁学中的“电”和“磁”,电路分析当中的“并联”和“串联”、“电容”和“电抗”等等。

5. 半径为无穷大的圆是什么?

可不可以这么想呀:想象可以对应到一个挖了一个点的球面上去:
可以发现,任何一个圆都能对应到球面上的一个圆上去,这是一个一一对应。
因此当半径趋于无穷大的时候,这个对应的圆就越靠近最顶上的那个极点。
因此我们认为,任何一个圆心在
上,半径为无穷大的圆,对应球面上的极点。如果我们将加上一个理想的无穷远点,任何直线都通过这个相同的无穷远点,可以验证这样补充定义是well defined的。此时,得到一一对应(是球面的缩写),由于半径无穷大的圆对应的是球面的极点,这个球面的极点对应到
就是补充定义的无穷远点。
因此可以总结:圆心在上,
半径为无穷大的圆是这个平面上的无穷远点。

半径为无穷大的圆是什么?

6. 若直线是半径无穷大的圆,平行线会怎么样相交呢?

在数学的某些场合中,这个说法是完全正确的,比如在射影几何当中,直线是半径无穷大的圆,以及平行线相交于无穷远处都是正确的描述,而射影几何属于欧式几何的一部分。
“直线是半径无穷大的圆”——这个描述表面上看起来似乎有些道理,但是总觉得哪不对,于是很多人首先会把这个说法当成错误的。

实际上,在射影几何当中,这个结论不仅是正确的,而且还变得相当重要,类似的描述还有“平行线相交于无穷远”。
在射影几何当中,有一个非常漂亮的原理——对偶原理,指在平面射影几何当中,我们把一个定理当中的对偶元素互换,相对应的性质也替换后,得到的命题依然成立;比如“点”和“直线”、“直线”和“平面”就是对偶元素。

而“过两点只能做一条直线”和“两条线只能交于一点”就属于对偶的两个定理,对偶原理非常强大,对于射影几何中的任何定理,利用对偶原理之后都可以得到一个全新的定理,比如1640年法国数学家发现了著名的六边形定理:

Pascal六边形定理:如果一个六边形内接于一条圆锥曲线,则该六边形的三对对边的交点共线。
然后在一百多年后的1806年,一位法国大学生布列安桑,发现了另外一个著名的六边形定理:
Brianchon六边形定理:如果一个六边形的六条边都和一条圆锥曲线相切,则该六边形的三对顶点的连线相交于一点。
如果我们不使用对偶原理,那么后一个六边形定理的证明将会变得十分复杂,一旦有了对偶原理,我们利用Pascal六边形定理得到后者只需要几分钟而已,这种数学原理之间的对称性相当美妙。
但是问题在于,我们在使用对偶原理时,必须接受“平行线相交于无穷远”这个描述,如果我们不承认这个描述,那么我们使用对偶原理时将会出现很多例外,一旦我们接受了这个描述,对偶原理将没有任何例外。

同样,关于“直线是半径无穷大的圆”,也是射影几何当中使用的正确描述,我们在使用对偶原理时也必须承认这个假设成立。

射影几何只是欧式平面几何的一部分,虽然对偶原理仅限于在射影几何中使用,但是对偶原理的思想在很多地方都有遇到,比如电磁学中的“电”和“磁”,电路分析当中的“并联”和“串联”、“电容”和“电抗”等等。

7. 有人说直线是半径无穷大的圆,这个理论对吗?

在数学的某些场合中,这个说法是完全正确的,比如在射影几何当中,直线是半径无穷大的圆,以及平行线相交于无穷远处都是正确的描述,而射影几何属于欧式几何的一部分。
  “直线是半径无穷大的圆”——这个描述表面上看起来似乎有些道理,但是总觉得哪不对,于是很多人首先会把这个说法当成错误的。
  
  实际上,在射影几何当中,这个结论不仅是正确的,而且还变得相当重要,类似的描述还有“平行线相交于无穷远”。
  在射影几何当中,有一个非常漂亮的原理——对偶原理,指在平面射影几何当中,我们把一个定理当中的对偶元素互换,相对应的性质也替换后,得到的命题依然成立;比如“点”和“直线”、“直线”和“平面”就是对偶元素。
  
  而“过两点只能做一条直线”和“两条线只能交于一点”就属于对偶的两个定理,对偶原理非常强大,对于射影几何中的任何定理,利用对偶原理之后都可以得到一个全新的定理,比如1640年法国数学家发现了著名的六边形定理:
  
  Pascal六边形定理:如果一个六边形内接于一条圆锥曲线,则该六边形的三对对边的交点共线。
  然后在一百多年后的1806年,一位法国大学生布列安桑,发现了另外一个著名的六边形定理:
  Brianchon六边形定理:如果一个六边形的六条边都和一条圆锥曲线相切,则该六边形的三对顶点的连线相交于一点。
  如果我们不使用对偶原理,那么后一个六边形定理的证明将会变得十分复杂,一旦有了对偶原理,我们利用Pascal六边形定理得到后者只需要几分钟而已,这种数学原理之间的对称性相当美妙。
  但是问题在于,我们在使用对偶原理时,必须接受“平行线相交于无穷远”这个描述,如果我们不承认这个描述,那么我们使用对偶原理时将会出现很多例外,一旦我们接受了这个描述,对偶原理将没有任何例外。
  
  同样,关于“直线是半径无穷大的圆”,也是射影几何当中使用的正确描述,我们在使用对偶原理时也必须承认这个假设成立。
  
  射影几何只是欧式平面几何的一部分,虽然对偶原理仅限于在射影几何中使用,但是对偶原理的思想在很多地方都有遇到,比如电磁学中的“电”和“磁”,电路分析当中的“并联”和“串联”、“电容”和“电抗”等等。

有人说直线是半径无穷大的圆,这个理论对吗?

8. 圆为什么有无数条半径和直径

因为只要过圆心的直线和圆周相交,也就是说弦,都是圆的直径。这样的弦有无数条。
圆是由所有到圆心的距离相等的点组成的。所以圆上有无数点。这无数的点与圆心连接的线段都是圆的半径,因此圆有无数的半径。
直径:两个相对的半径组成一个直径,因为有无数的半径,所有有无数个直径。

扩展资料圆的性质
⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
参考资料来源:百度百科-圆