分形理论简述

2024-05-15 16:47

1. 分形理论简述

分形几何(Fractal Geometry)的概念是由曼德布罗特(B.B.Mandelbrot.1975)在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.
分形(fractal)一词最早由B.B.Mandelbrot于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.最先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.
分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.
从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.
分形论的提出,对科学认识论与方法论具有广泛而深远的意义.第一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维方法由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.
分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.
分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学方法和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.
分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.
分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别最低的为生成元,级别最高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.
分形具有以下几个基本性质:
(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.
(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.
(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.
(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.
(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的方法进行分析和处理.
目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).
分形研究应注意以下几个问题:
(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.
(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.
(3)多标度性.一个物体的分形特性通常是在某些尺度下体现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.
模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.
分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.
临界现象与分形有关.重整化群是研究临界现象的一种方法.该方法首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群方法的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.
自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.
分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.
自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:
(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流网络,断裂网络,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.
(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.
分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.
总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.

分形理论简述

2. 分形理论的介绍

分形理论(Fractal Theory)是当今十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家本华·曼德博(法语:Benoit B. Mandelbrot)首先提出的。分形理论的数学基础是分形几何学,即由分形几何衍生出分形信息、分形设计、分形艺术等应用。分形理论的最基本特点是用分数维度的视角和数学方法描述和研究客观事物,也就是用分形分维的数学工具来描述研究客观事物。它跳出了一维的线、二维的面、三维的立体乃至四维时空的传统藩篱,更加趋近复杂系统的真实属性与状态的描述,更加符合客观事物的多样性与复杂性。

3. 分形理论-世界很神奇

从前有座山,山里有座庙,庙里有两个和尚,一个大和尚,一个小和尚,大和尚给小和尚讲故事。大和尚说:从前有座山,山里有座庙,庙里有两个和尚,一个大和尚,一个小和尚,大和尚给小和尚讲故事,大和尚说:……
  
 有没有一些童年的记忆,甚至有些愤怒的搞笑,这个三天三夜也讲不完的故事,就是我小时候,哥哥常常忽悠我的故事。
  
 你知道吗?这个无聊的故事背后,包含一个伟大的思维模型:
  
 什么是分形理论?
  
 简单讲,就是局部与整体的自相似性。
  
 讲复杂点吧,是这样的:
  
 分形,源自拉丁语:frāctus,有“零碎”、“破裂”之意,又称碎形、残形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。
  
 1982 年曼德博提出了更正式的定义:
  
 后来他认为这种定义过于严格,于是简化并扩展了这个定义:
  
 又过了一段时间,曼德博决定使用以下方式来描述分形:
  
 为什么要讲复杂点呢?
  
 因为分形其实比你想象中更复杂,更难。
  
 先看看生活中,有哪些例子:
  
 如果你有有散步习惯,看看小区的树,是否有分形相似。
  
 
  
                                          
 我自己随处拍了几张
  
 
  
                                          
 
  
                                          
 
  
                                          
 
  
                                          
 
  
                                          
 典型的分形特征
  
 自然界里一定程度上类似分形的事物还有云、山脉、闪电、海岸线、雪片、植物根、多种蔬菜(如花椰菜和西兰花)和动物的毛皮的图案等等。
  
  
 除了真实自然界外,在数学领域,用递归法,利用计算机技术,可以做出很多分形图形。
  
 下面我们看非常出名的 龙之图形: 
  
  首先,我们先选取一条线段作为最初的图形P(0)。然后我们把这个图形做两个形变:第一,沿着中线对折,成为直角折线,第二,将这个直角折线拉伸,使其两个端点距离与最初线段长度相等。经过这两个形变之后,它成为第二个图形P(1)。然后我们对P(2)中的每一条直线段也做同样的形变,并不断重复。 
  
   
                                          
 我们来看看这种对一个线段进行简单的拉伸和弯折两个动作的变换最终会形成什么样的图形,第五张照片是这样的:
  
 
  
                                          
 第8张图片
  
 
  
                                          
  第11张图片 
                                          
 第13张图片
  
                                          
 经过多次迭代变形,最终图形
  
                                          
 这个图形数学家把它叫做Dragon’s Curve (龙之曲线),据说是因为它外形像一只龙。不管你信不信,反正我信了。类似的分形非常之多,并且其中不乏绚丽多彩的。
  
 比如曼德博的上帝的指纹
  
 
  
                                          
 
  
                                          
 
  
                                          
 
  
                                          
 
  
                                          
 是不是很神奇,局部与整体自相似性
  
 科赫雪花
  
 
  
                                          
 
  
  
 
  
                                          
 
  
                                          
 
  
  
 
  
                                          
 
  
                                          
 除此之外,还有很多,如:康托尔集,皮亚诺曲线等等。
  
 分形图形,生活中和数学上有很多,大体可分为三类。
  
 这是最强的一种自相似,分形在任一尺度下都显得一样。由迭代函数系统定义出的分形通常会展现出精确自相似来。
  
  
 这是一种较松的自相似,分形在不同尺度下会显得大略(但非精确)相同。半自相似分形包含有整个分形扭曲及退化形式的缩小尺寸。由递推关系式定义出的分形通常会是半自相似,但不会是精确自相似。
  
 这是最弱的一种自相似,这种分形在不同尺度下都能保有固定的数值或统计测度。大多数对“分形”合理的定义自然会导致某一类型的统计自相似(分形维数本身即是个在不同尺度下都保持固定的数值测度)。随机分形是统计自相似,但非精确及半自相似的分形的一个例子。
  
 概括起来,分形图形有如下特点
  
 ①在任意小的尺度上都能有精细的结构;
  
  
 ②太不规则,以至无论是其整体或局部都难以用传统欧氏几何的语言来描述;
  
 ③具有(至少是近似的或统计的)自相似形式;
  
 ④一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓扑维数;
  
 ⑤在多数情况下有着简单的递归定义。
  
 分形理论,严格来说,属于数学学科研究范畴,但在生活中也有很多类似案例,具备半相似性和统计相似性,因此可以指导我们思考问题和认识世界。
  
 如果研究股票k线图,仔细观察月k线,周k线,日k线,小时k线,分钟k线,你会发现其具有分形相似,如果能把握好,可以指导炒股票。
  
 我们上学的时候都学过,我国的海岸线全长约1.8万公里(北起鸭绿江口,南止北仓河口)。这个长度是以1公里长的标尺测量得到的。然而如果我们采用短些的标尺,例如1 厘米长的标尺,则测得海岸线长度为381.2万公里,这是地理书上给出长度的212倍。如果我们再细分,估计会得到更长海岸线。
  
  
 正如1967年Mandelbrot就提出“英国的海岸线有多长?”的问题一样,按照分形理论和无限细分法,海岸线是无限长的。
  
 看分形理论时,我突然想到,每个人的一生是否可以分形到每年每月每日,答案是肯定的。
  
 从七八岁开始,如果你的性格确定,你的大致行为方式确定,你的一生过得非常相似,一天一年是你一生的局部缩影,具有自相似性。
  
 反过来,你希望一生有收获,一年有进步,你需要做的就是每一天把时间充分利用好。你每一天的生活工作学习状态,其实就是一年的分形状态。
  
 生活很多变,人生很复杂,但一切的复杂都源于简单。利用分形理论,化繁为简,你只需要过好你每一天,过好每一天的标准很简单,就是这一天的时间,你是否做了最科学最合理最充实的安排。
  
 
  
  
 回到文章开端,从前有座山,山里有个庙……
  
 其实,这个故事,就是人生分形的缩影,看起来无聊,却真切的反映出人生的分形和无穷无尽,描述了无数大众人生的轮回转换,最简单的故事中,蕴含着最真切的道理。

分形理论-世界很神奇

4. 分形理论及其应用的介绍

《分形理论及其应用》主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。

5. 分形的探讨

 分形几何与传统几何相比有什么特点:⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随机现象的,还有一些是用来描述混沌和非线性系统的。 在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b,D=(ln b)/(ln a)的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。Koch曲线的每一部分都由4个跟它自身比例为1:3的形状相同的小曲线组成,那么它的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714...

分形的探讨

6. 分形理论的介绍

分形理论(Fractal Theory)是当今十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家本华·曼德博(法语:Benoit B. Mandelbrot)首先提出的。分形理论的数学基础是分形几何学,即由分形几何衍生出分形信息、分形设计、分形艺术等应用。分形理论的最基本特点是用分数维度的视角和数学方法描述和研究客观事物,也就是用分形分维的数学工具来描述研究客观事物。它跳出了一维的线、二维的面、三维的立体乃至四维时空的传统藩篱,更加趋近复杂系统的真实属性与状态的描述,更加符合客观事物的多样性与复杂性。

7. 分形的探讨

 分形几何与传统几何相比有什么特点:⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随机现象的,还有一些是用来描述混沌和非线性系统的。 在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:a^D=b,D=(ln b)/(ln a)的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。Koch曲线的每一部分都由4个跟它自身比例为1:3的形状相同的小曲线组成,那么它的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714...

分形的探讨

8. 分形理论的分形模型