煤储层压裂裂缝长期导流能力实验研究及影响因素分析

2024-05-16 14:40

1. 煤储层压裂裂缝长期导流能力实验研究及影响因素分析

杨焦生 王一兵 王宪花 陈艳鹏 王勃
基金项目:国家973课题“提高煤层气开采效率的储层改造基础研究”(2009CB219607)资助。
作者简介:杨焦生,男,工程师,中国石油勘探开发研究院廊坊分院工作,从事煤层气开发及增产措施研究。地址:河北省廊坊市万庄石油分院44#信箱煤层气所,邮编:065007;电话:13513014216。E-mail:yangjiaosheng@126.com
(中石油廊坊分院 河北廊坊 065007)
摘要:长期导流能力评价实验可以反映油气藏条件下裂缝真实的导流能力,为压裂设计和施工提供可靠参考。运用FCES-100长期裂缝导流仪,测试了不同条件下煤岩水力裂缝的长期导流能力,并分析了嵌入、煤粉、胍胶液残渣及复杂裂缝等因素对导流能力的影响。测试结果表明,煤岩强度低,嵌入伤害严重,在较低的闭合应力(15MPa)下就表现明显的伤害,而砂岩当闭合压力大于25MPa时,嵌入伤害才比较明显;煤粉为疏水性,易聚集堵塞裂缝,大大降低导流能力。为克服嵌入和煤粉的伤害,施工中可采取增加铺砂浓度、加大支撑剂粒径、加入分散剂悬浮煤粉等方法。胍胶压裂液由于破胶难,残渣对裂缝渗透率伤害高达70%~80%,可使导流能力下降30%~50%,应加强对超低温破胶技术的研究;裂缝形态对导流能力也有很大的影响,复杂裂缝与单一裂缝相比,等效导流能力降低。研究成果对煤层压裂材料优选、现场施工控制及压后产能评价具有积极的指导意义。
关键词:长期导流能力煤粉支撑剂裂缝形态压裂液残渣
Experimental Study and Influence Factors Analysis on Long- term Conductivity of Hydraulic Fractures in Coal Seams
YANG Jiaosheng WANG Yibing WANG Xianhua CHEN Yanpeng WANG Bo
(Langfang Branch, Research Institute of Petroleum Exploration and Development, PetroChina, Langfang 065007, China)
Abstract: The long-term conductivity of hydraulic fractures under different situation in medium-and high-rank coal bed are tested by using FCES-100 fracture long-term flow conductometer.The influence of proppant embed- ment, coal powder, guar gum residue and complex fractures to conductivity are also analyzed.Experiment results show that proppant embedment can cause seriously damage to conductivity for low·intensity of coalbed.Under low closure stress (f为充填裂缝导流能力,dc·cm;Q为裂缝内流量,cm3/min;μ为流体粘度,mPa·s;△p为测试段两端的压力差,atm。
因此,实验中只需测得压差及流量即可求得支撑剂的导流能力。图1为API支撑剂导流室解剖图,可以模拟地层条件,对不同类型支撑剂进行短期或长期导流能力评价。
2 实验条件和煤样制备
为了真实地反映支撑剂在地下裂缝的实际情况,模拟温度取40℃,选用长期导流能力测试,每个测试压力点都测量50小时,闭合压力分别为10,15,20,25和30MPa。支撑剂选用现在普遍采用的石英砂(兰州砂),选择20/40目和10/20目两种进行试验。实验中的流体选择为2%KCl水溶液和胍胶液,流体速度2~5ml/min。实验使用晋城(高煤阶)和韩城(中煤阶)两地的天然煤岩,实验试件的尺寸为长17.7cm,宽3.8cm,厚1~2cm,端部成半圆形(图2)。
3 实验方法
在导流室中夹持煤片模拟煤层裂缝,将实验流体以稳定的流速通过两片煤板之间的支撑剂填充层,逐渐增大闭合压力得到裂缝导流能力随闭合压力变化的曲线。通过改变煤岩类型、煤粉浓度、铺砂浓度、胍胶液浓度和用量、支撑剂粒径及组合、裂缝形态等实验条件得出不同闭合压力与导流能力的关系曲线,然后将不同的曲线进行比较分析,评价不同因素对煤岩裂缝导流能力的影响。
4 实验结果与分析
4.1 支撑剂嵌入及煤粉对导流能力的影响
(1)支撑剂嵌入影响
实验选用20/40目兰州砂,铺砂浓度分别为5kg/m2和10kg/m2,用钢板、砂岩和煤岩板(高、中煤阶两种)分别进行实验,实验结果见图3,4。

图1 API支撑剂导流室解剖图


图2 不同煤阶煤岩板


图3 钢板、砂岩、煤岩导流能力对比图(铺砂浓度5kg/m2)


图4 钢板与煤岩导流能力对比图(铺砂浓度10kg/m2)

可以看出,使用钢板(无嵌入)测得的导流能力明显大于使用煤岩测得的导流能力,说明支撑剂在煤岩中的嵌入伤害程度很大。实验证实煤层嵌入比砂岩严重,在闭合压力大于10~15MPa时,导流能力就急剧降低,而砂岩闭合压力大于20~25MPa时才下降较快。
由于中煤阶煤岩的强度更低,同样条件下,中煤阶嵌入伤害更严重,中煤阶明显嵌入时的闭合压力比高煤阶更低,嵌入程度约为高煤阶的1.5倍,造成导流能力下降幅度更大。嵌入伤害越严重,裂缝壁面嵌入部分产生的煤粉碎屑越多,对支撑裂缝内的流体流动阻碍更大,使得导流能力进一步下降。
(2)煤粉产出对导流能力的影响
实验选用20/40目石英砂,采用10kg/m2铺砂浓度,分别混入2%和5%的煤粉(100目),采用高阶煤煤岩片进行实验,实验结果见图5。
由图5可以看出,煤粉对裂缝导流能力伤害很大,随着闭合压力的增大,煤粉浓度的增高,导流能力迅速下降。闭合压力10~30MPa,2%煤粉可以使导流能力下降10%~35%,5%煤粉可使导流下降20%~60%。煤粉是疏水性的,不易分散于水或水基压裂液,从而极易聚集起来阻塞裂缝孔隙喉道,随着时间的延长,煤粉微粒不断运移,可以使得堵塞更为严重。如在压裂液中加入润湿剂和分散剂则能使煤粉由疏水性转为亲水性,有助于分散与悬浮煤粉于压裂液中,阻止煤粉的聚集,有利于煤粉的返排。如图6显示,加入两种不同分散剂FSJ-01,FSJ-02后裂缝导流能力有所改善。

图5 不同煤粉浓度下导流能力对比图


图6 加入分散剂对导流能力的影响结果(铺砂浓度5kg/m2)

4.2 支撑剂粒径对导流能力的影响
实验应用晋城高阶煤岩,选择10/20目和20/40目两种粒径支撑剂按照不同比例(1:1,1:2,1:3)混合,测试其导流能力变化,铺砂浓度为10kg/m2。
由图7可以看出,当闭合压力低于20MPa时,单一粒径10/20目的石英砂的导流能力比20/40目的大30~50%,且大粒径支撑剂所占比例越大,其导流能力也越大。而当闭合压力高于20MPa时,各比例组合导流能力相差不大。因此,压裂施工过程中,考虑造缝和携砂效果,前期应用较小粒径支撑剂(20/40目),低排量施工,可较好支撑多裂缝的支缝系统,使裂缝延伸更长;后期尾追较大粒径支撑剂(10/20目)提高近井地带的导流能力。
4.3 铺砂浓度对导流能力的影响
实验选用20/40目兰州砂,分别选取5kg/m2和10kg/m2两种铺砂浓度进行实验,实验结果见图8。

图7 不同粒径支撑剂组合导流能力对比图


图8 不同煤岩、不同铺砂浓度导流能力对比图

由图8可知,无论何种煤阶煤岩,提高支撑剂的铺砂浓度导流能力都有明显的提高,铺砂浓度从5kg/m2提高到10kg/m2,支撑剂的导流能力可以提高50%~100%。而低铺砂浓度下一旦发生嵌入现象,其影响要比高铺砂浓度大。闭合压力越大,铺砂浓度越低,地层岩石越软,嵌入越严重。因此,较软的中阶煤层中为了降低嵌入和煤粉对导流能力的伤害,施工过程中应该增大砂比,提高填充裂缝的铺砂浓度显得更为必要。因此为了提高支撑裂缝的导流能力可在施工条件许可的条件内适当增加支撑剂的铺砂浓度。
4.4 压裂液残渣对导流能力的影响
煤层温度低,胍胶压裂液破胶难,造成残渣吸附在煤基质或堵赛支撑剂孔隙,导致基质、裂缝内渗透率下降,导流能力减小,因此这一部分主要考察压裂残渣对支撑剂导流能力的影响。在这里选用20/40目石英砂,10kg/m2铺砂浓度,煤样为晋城高煤阶,分别做了不加压裂液、加入浓度0.4%的150ml胍胶液、加入浓度0.5%的150ml胍胶液和浓度0.5%的100ml胍胶液情况下的导流能力测试,评价胍胶压裂液导流能力的伤害,并进行对比分析,如图9。

图9 压裂液残渣伤害综合对比图

压裂液残渣的伤害,导致了支撑剂导流能力明显的降低,不同的闭合压力下及伤害程度平均在30%以上。相同闭合压力下,同一样品注入瓜胶压裂液越多,浓度越高,导流能力伤害越大,0.5%的瓜胶液比相同量的0.4%瓜胶压裂液导流能力下降10%以上,0.5%的150ml胍胶量比0.5%的100ml量导流能力降低20%。
因此煤层压裂液体系在选用冻胶时,需要充分研究其在煤层低温条件下的高效破胶技术,同时也可以尝试加入化学物质来降解、氧化冻胶残渣,减少残渣对水力裂缝的堵塞,从而达到增加裂缝渗透性,提高单井产量的目的。
4.5 复杂裂缝对导流能力的影响
为了描述煤层水力压裂中形成的“T”形、“I”形等复杂裂缝对导流能力的影响,本次实验中模拟研究多条裂缝(两条)导流能力的变化情况。实验选用20/40目兰州砂,将一定量的石英砂平均分成两份,分别充填于两条相邻裂缝内(铺砂浓度5kg/m2),测试其综合导流能力,并与单一支撑裂缝(铺砂量与两条裂缝相同,铺砂浓度10kg/m2)的导流能力进行对比,如图10所示。
图11实验结果显示,等量的支撑剂,多条(两条)裂缝的导流能力小于单一裂缝的导流能力,平均可以降低14.6%。主要是由于裂缝条数的增多,造成支撑剂较为分散,铺砂浓度降低,增加支撑剂嵌入和煤粉堵塞;另一方面,缝间流体流动发生转向,产生附加渗流阻力,压裂后的煤岩裂缝形态和表面极其不规则,这种渗流阻力会更大,致使导流能力进一步降低。由于煤岩强度差异,裂缝形态对中阶煤岩的导流能力影响程度更大,闭合压力为20MPa时,中煤阶煤岩导流能力降低17.6%,高煤阶煤岩降低12.8%。

图10 复杂支撑裂缝(浓度5kg/m2)和单一支撑裂缝(浓度10kg/m2)示意图


图11 不同裂缝形态下的导流能力对比图

5 结论
(1)煤岩强度低,支撑剂嵌入造成的导流能力伤害非常严重(伤害率50%以上)。煤层嵌入比砂岩严重,在闭合压力大于10~15MPa时,导流能力就急剧降低,而砂岩闭合压力大于20~25MPa时导流能力明显下降。中煤阶嵌入伤害更严重,中煤阶明显嵌入时的闭合压力比高煤阶更低,嵌入程度约为高煤阶的1.5倍,
(2)闭合压力10~30MPa,2%的煤粉可以使导流能力下降13.1%~34.9%,5%煤粉可下降19.7%~53.2%,在压裂液中加入分散剂可以使煤粉不易聚集,有利于返排,降低伤害。
(3)提高支撑剂的铺砂浓度和增大支撑剂的粒径可以明显提高裂缝的导流能力,地层闭合压力增大时应相应增加铺砂浓度,在软煤层中显得尤为必要。
(4)压裂液残渣伤害对支撑剂导流能力有很大影响,由于压裂液残渣的伤害,导致了支撑剂导流能力下降了30%左右,而降低压裂液的用量或减小压裂液的胍胶浓度都可以减小残渣伤害的影响,提高支撑剂的导流能力。
(5)同等量的支撑剂,复杂裂缝的导流能力小于单一裂缝的导流能力。与高阶煤岩相比,裂缝形态对中阶煤岩的导流能力影响程度更大。闭合压力为20MPa时,中煤阶煤岩导流能力降低17.6%,高煤阶煤岩降低12.8%。
参考文献
郭建春,卢聪,赵金洲等.2008.支撑剂嵌入程度的实验研究[J],煤炭学报,33(6):661~664
琚宜文,姜波,侯泉林,王桂梁,方爱民.2005.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J],地质学报,79(2):269~285
申卫兵,张保平.2000.不同煤阶煤岩力学参数测试[J],岩石力学与工程学报,19(S1):860~862
王春鹏,张士诚,王雷等.2006.煤层气井水力压裂裂缝导流能力实验评价[J],中国煤层气,3(1):17~20
邹雨时,马新仿,王雷,林鑫.2011.中、高煤阶煤岩压裂裂缝导流能力实验研究[J],煤炭学报,36(3):473~476

煤储层压裂裂缝长期导流能力实验研究及影响因素分析

2. 裂缝监测技术在煤层气井压裂中的应用初探

张健
基金项目:国家科技重大专项项目42“深煤层煤层气开发技术研究和装备研制”(2011ZX05042)。
作者简介:张健,1981年生,博士,2009年毕业于中国石油大学(北京)并获得博士学位;主要从事煤层气开发和现代完井工程研究。地址:(100011)北京市东城区安外大街甲88号。Email:zhangjian@chinacbm.com。
(中联煤层气有限责任公司 北京 100011)
摘要:采用井下微地震监测技术和电位法监测技术对压裂过程中的裂缝形态进行了实时监测,结果表明:井下微地震监测实现了对裂缝方位、高度、长度、对称性及裂缝随时间的延伸情况的有效解释。电位法测试技术适用于规模较大型压裂,特别适合于浅井大型水力压裂。对同一口井应用两种技术实施监测结果表明,裂缝监测能够有效反映压裂裂缝的水平走向,有助于认清该区地层应力分布状态,但垂向扩展仅能反映事件频率,无法实现对裂缝高度和宽度的有效分析监测。
关键词:压裂 裂缝监测 煤层气 微地震 电位法
Application of Fracture Monitoring Technology to Fracturing Well in Coalbed Methane Reservoir
ZHANG Jian
(China United Coalbed Methane Co., Ltd., Beijing 100011, China)
Abstract: Down hole micro-seismic monitoring technology and potentiometry monitoring technology are used to show fracture real-time geometry.It shows that fracture orientation, height, length, symmetry and extension can be interpreted by down hole micro-seismic monitoring technology.The potentiometry monitoring technology is suit for major scale fracturing, especially for shallow well.As the result of monitor adopted on the same well with two methods shows, the fracture orientation on horizontal level can be reflected effectively, which will be favor of recognizing stress distribution.However, the frequency of fracturing can only be characterized in vertical direc- tion.The height and width of fracture can not be analyzed effectively.
Keywords: fracturing; fracture monitoring; coalbed methane; micro-seismic; potentiometry
1 引言
目前我国煤层气开发主要采用压裂提高采收率技术,压裂参数优化设计对于完善压裂方案、提高单井产能十分重要。前期压裂方案以浅层、经验为主,随着煤层深度增加,有必要建立适用于较深煤层的压裂参数组合,通过采用井下微地震监测技术和电位法监测技术对现有压裂方案下的施工裂缝形态进行了实时监测,为进一步完善煤层气压裂技术提供了技术支持。
2 测试原理
2.1 井下微地震测试原理
井下微地震测试方法是在邻井监测直井压裂作业,通过使用井下三分量地震成像系统监测压裂过程中产生的微地震事件,对采集到的井下三分量微地震数据进行解释,得到压裂形成裂缝的空间展布(方位、长度)[1,2]。
2.1.1 微地震的起源
微地震源于由于压力影响围绕着水力裂缝的一定区域内,该区域内的微地震事件包括:裂缝尖端的应力改变诱发微地震,液体滤失诱发微地震,地层薄弱面处诱发微地震。
2.1.2 微地震产生点距离的确定
地层由于应力状态改变产生剪切滑动并诱发压缩波(P波)和剪切波(S波),P波传播速度大于S波,随着传播距离的增加,初至波的时差增大,利用三分量检波器接收可分辨不同分量的剪切波和压缩波,从而确定微地震点产生距离。
2.1.3 微地震方位的确定
采用振幅交汇图方法,即建立P波首波的振幅交汇图确定微地震震源的方向,压缩波的传播方向和振动方向一致,跟踪一个周期内质点的振动即可确定其传播方位α,如图1所示。现场测试系统包括数据记录系统、SeisNet工作站和质量控制系统,实现数据的保存、分析,如图2所示。

图1 微地震方位确定示意图


图2 测试系统示意图

2.2 电位法测试原理
电位法监测技术以传导类电法勘探基本理论为依据,通过监测注入到目的层的压裂液引起的地面电场变化获得裂缝方位、长度、形态等参数[3,4]。
假设地层为无限大均匀介质,采用环形测量方式,在供电电极外任一点M观测电场的电位为:

中国煤层气技术进展:2011年煤层气学术研讨会论文集

式中:ρ为地层视电阻率,Ω·m;I为供电电流强度,A;h为测试目的层深度,m;r为观测点M到点源之间的距离,m。
当场源为任意形状时,计算外电场电位应首先在场源处划出一个面元ds,如果ds处的电流密度为j,则从ds处流出的电流为jds,它在观测点M产生的电位dUM仿上式可写为:

中国煤层气技术进展:2011年煤层气学术研讨会论文集

积分得外电场电位为:

中国煤层气技术进展:2011年煤层气学术研讨会论文集

现场测试所用的仪器系统由测量系统(经纬仪)、供电系统(ZT7000型发电机)、发送系统和接收系统(HGQ-5/10kW/Js-03发送接收系统)四部分组成,如图3所示。

图3 测试装置示意图

3 现场应用与评价
对山西沁水盆地施工区域五口井进行了电位法监测,对三口井实施了井下微地震监测。电位法监测显示:压裂施工形成了一组两翼方向基本对称或略有夹角的不等长裂缝,如图4所示,地层渗透率各向异性和构造应力复杂是造成该现象的主要因素。对氮气注入实验井的监测结果表明:由于煤层中氮气等气体化学性质不活泼,其在煤层中仍然以分子形式存在,因此基本不改变煤储层的导电性能,通过电位法难以实现监测其在煤储层中的分布。
井下微地震监测结果显示,裂缝向两个方向延伸且不对称,监测到的微地震事件大多位于煤层以上的地层,微地震事件发生范围较广,如图5所示。
4 结论
(1)井下微地震监测实现了对裂缝方位、长度、对称性及裂缝随时间的延伸情况的有效解释。
(2)电位法测试技术适用于规模较大型压裂,特别适合于浅井大型水力压裂。
(3)对同一口井应用两种技术实施监测结果表明,裂缝监测能够有效反映压裂裂缝的水平走向,有助于认清该区地层应力分布状态,但垂向扩展仅能反映事件频率,无法实现对裂缝高度和宽度的有效分析监测。

图4 电位法监测压裂裂缝水平投影图


图5 微地震监测压裂裂缝剖面图

参考文献
[1]夏永学,潘俊锋,王元杰等.2011.基于高精度微震监测的煤岩破裂与应力分布特征研究[J].煤炭学报,36(2):239~243
[2]徐剑平.2011.裂缝监测方法研究及应用实例[J].科学技术与工程,11(11):2575~2577,2581
[3]王香增.2006.井-地电位法在煤层气井压裂裂缝监测中的应用[J].煤炭工程,5:36~37
[4]郭建春,李勇明等.2009.电位法裂缝测试技术研究与应用[J].石油地质与工程,23(3):127~129

3. 裂缝监测技术在煤层气井压裂中的应用初探

张 健
( 中联煤层气有限责任公司 北京 100011)
摘 要: 采用井下微地震监测技术和电位法监测技术对压裂过程中的裂缝形态进行了实时监测,结果表明: 井下微地震监测实现了对裂缝方位、高度、长度、对称性及裂缝随时间的延伸情况的有效解释。电位法测试技术适用于规模较大型压裂,特别适合于浅井大型水力压裂。对同一口井应用两种技术实施监测结果表明,裂缝监测能够有效反映压裂裂缝的水平走向,有助于认清该区地层应力分布状态,但垂向扩展仅能反映事件频率,无法实现对裂缝高度和宽度的有效分析监测。
关键词: 压裂 裂缝监测 煤层气 微地震 电位法
Application of Fracture Monitoring Technology to Fracturing Well in Coalbed Methane Reservoir
ZHANG Jian
( China United Coalbed Methane Co. ,Ltd. ,Beijing 100011,China)
Abstract: Down hole micro-seismic monitoring technology and potentiometry monitoring technology are used to show fracture real-time geometry. It shows that fracture orientation,height,length,symmetry and extension can be interpreted by down hole micro-seismic monitoring technology. The potentiometry monitoring technology is suit for major scale fracturing,especially for shallow well. As the result of monitor adopted on the same well with two methods shows,the fracture orientation on horizontal level can be reflected effectively,which will be favor of recognizing stress distribution. However,the frequency of fracturing can only be characterized in vertical direc- tion. The height and width of fracture can not be analyzed effectively.
Keywords: fracturing; fracture monitoring; coalbed methane; micro-seismic; potentiometry
基金项目: 国家科技重大专项项目 42 “深煤层煤层气开发技术研究和装备研制”( 2011ZX05042) 。
作者简介: 张健,1981 年生,博士,2009 年毕业于中国石油大学 ( 北京) 并获得博士学位; 主要从事煤层气开发和现代完井工程研究。地址: ( 100011) 北京市东城区安外大街甲 88 号。Email: zhangjian@ chinacbm. com。
1 引言
目前我国煤层气开发主要采用压裂提高采收率技术,压裂参数优化设计对于完善压裂方案、提高单井产能十分重要。前期压裂方案以浅层、经验为主,随着煤层深度增加,有必要建立适用于较深煤层的压裂参数组合,通过采用井下微地震监测技术和电位法监测技术对现有压裂方案下的施工裂缝形态进行了实时监测,为进一步完善煤层气压裂技术提供了技术支持。
2 测试原理
2.1 井下微地震测试原理
井下微地震测试方法是在邻井监测直井压裂作业,通过使用井下三分量地震成像系统监测压裂过程中产生的微地震事件,对采集到的井下三分量微地震数据进行解释,得到压裂形成裂缝的空间展布(方位、长度)[1,2]。
2.1.1 微地震的起源
微地震源于由于压力影响围绕着水力裂缝的一定区域内,该区域内的微地震事件包括:裂缝尖端的应力改变诱发微地震,液体滤失诱发微地震,地层薄弱面处诱发微地震。
2.1.2 微地震产生点距离的确定
地层由于应力状态改变产生剪切滑动并诱发压缩波(P波)和剪切波(S波),P波传播速度大于S波,随着传播距离的增加,初至波的时差增大,利用三分量检波器接收可分辨不同分量的剪切波和压缩波,从而确定微地震点产生距离。
2.1.3 微地震方位的确定
采用振幅交汇图方法,即建立P波首波的振幅交汇图确定微地震震源的方向,压缩波的传播方向和振动方向一致,跟踪一个周期内质点的振动即可确定其传播方位α,如图1所示。现场测试系统包括数据记录系统、SeisNet工作站和质量控制系统,实现数据的保存、分析,如图2所示。

图1 微地震方位确定示意图


图2 测试系统示意图

2.2 电位法测试原理
电位法监测技术以传导类电法勘探基本理论为依据,通过监测注入到目的层的压裂液引起的地面电场变化获得裂缝方位、长度、形态等参数[3,4]。
假设地层为无限大均匀介质,采用环形测量方式,在供电电极外任一点M观测电场的电位为:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:ρ为地层视电阻率,Ω·m;I为供电电流强度,A;h为测试目的层深度,m;r为观测点M到点源之间的距离,m。
当场源为任意形状时,计算外电场电位应首先在场源处划出一个面元ds,如果ds处的电流密度为j,则从ds处流出的电流为jds,它在观测点M产生的电位dUM仿上式可写为:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

积分得外电场电位为:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

现场测试所用的仪器系统由测量系统(经纬仪)、供电系统(ZT7000型发电机)、发送系统和接收系统(HGQ-5/10kW/Js-03发送接收系统)四部分组成,如图3所示。

图3 测试装置示意图

3 现场应用与评价
对山西沁水盆地施工区域五口井进行了电位法监测,对三口井实施了井下微地震监测。电位法监测显示:压裂施工形成了一组两翼方向基本对称或略有夹角的不等长裂缝,如图4所示,地层渗透率各向异性和构造应力复杂是造成该现象的主要因素。对氮气注入实验井的监测结果表明:由于煤层中氮气等气体化学性质不活泼,其在煤层中仍然以分子形式存在,因此基本不改变煤储层的导电性能,通过电位法难以实现监测其在煤储层中的分布。
井下微地震监测结果显示,裂缝向两个方向延伸且不对称,监测到的微地震事件大多位于煤层以上的地层,微地震事件发生范围较广,如图5所示。
4 结论
(1)井下微地震监测实现了对裂缝方位、长度、对称性及裂缝随时间的延伸情况的有效解释。
(2)电位法测试技术适用于规模较大型压裂,特别适合于浅井大型水力压裂。
(3)对同一口井应用两种技术实施监测结果表明,裂缝监测能够有效反映压裂裂缝的水平走向,有助于认清该区地层应力分布状态,但垂向扩展仅能反映事件频率,无法实现对裂缝高度和宽度的有效分析监测。

图4 电位法监测压裂裂缝水平投影图


图5 微地震监测压裂裂缝剖面图

参考文献
[1]夏永学,潘俊锋,王元杰等.2011.基于高精度微震监测的煤岩破裂与应力分布特征研究[J].煤炭学报,36(2):239~243
[2]徐剑平.2011.裂缝监测方法研究及应用实例[J].科学技术与工程,11(11):2575~2577,2581
[3]王香增.2006.井地电位法在煤层气井压裂裂缝监测中的应用[J].煤炭工程,5:36~37
[4]郭建春,李勇明等.2009.电位法裂缝测试技术研究与应用[J].石油地质与工程,23(3):127~129

裂缝监测技术在煤层气井压裂中的应用初探

最新文章
热门文章
推荐阅读