人工智能用于医疗对中国有哪些影响?

2024-05-19 08:00

1. 人工智能用于医疗对中国有哪些影响?

人工智能中,对医疗领域影响最直接的地方!专家言简意赅

人工智能用于医疗对中国有哪些影响?

2. 人工智能在医疗行业的影响是怎样的?

人工智能的面世,世界各个领域都发生了翻天覆地的变化,AI+医疗的结合也变得越来越紧密。人工智能(AI)在医疗上扮演一定的重要角色,在医疗领域可以显著降低成本、提高效率、改善医疗水平,为医疗行业点燃新的希望。这将是AI在医疗行业的主要驱动因素。
  
  医疗影像 
  
 人工智能技术在医疗影像的应用,主要指通过计算机视觉技术对医疗影像进行快速读片和智能诊断,以传统医疗手段中采集到的医疗数据为根基,自动识别病人的临床变量和指标,同时结合相关医学知识,在病理诊断及医学影像识别中为医生提供辅助医疗工作,并为患者提供诊疗方法参考。
  
 
  
                                          
  新药研发 
  
 人工智能(AI)技术在新药开发领域逐渐兴起,特别是利用机器学习(ML)和深度学习(DL)算法来改善药物开发过程。利用人工智能技术对候选化合物进行鉴定和优化,使其具有所需要的药理学特性。利用人工智能算法可以将原本需要持续多年的开发过程缩短至仅需数月。
  
 
  
                                          
  手术机器人 
  
 利用机器人做外科手术已日益普及,美国仅2004年一年,机器人就成功完成了从前列腺切除到心脏外科等各种外科手术2万例。现在许多大医院正在将人工智能技术应用到手术中,通过数据化和3D技术,将传统的二维图像信息立体化,使医生的病患分析和手术治疗更加轻松精准。手术机器人可以极大提高手术的精准度、减少手术创伤和副作用,能加快手术后的恢复、降低患者的手术成本。
  
 
  
                                          
  康复机器人 
  
 康复机器人是工业机器人和医用机器人的结合,是目前世界上最成功的一种低价的康复机器人系统。如今一些医疗康复机器人,例如微创外科手术机器人、脊柱手术机器人、血管介入机器人、肢体功能康复机器人、智能假肢、外骨骼辅助机器人等,已经开始应用于临床或具备了临床应用的技术条件和基础。诸多临床试验表明,康复机器人能一定程度上帮助长期瘫痪的中风患者恢复自身主动控制肢体的能力。患者可以在康复机器人的帮助下,对肢体的患侧进行准确重复性的运动练习,从而加快运动功能的康复进程。
  
 
  
                                          
 未来,AI将发挥重要作用,通过提质增效、降本增益、模式创新,推动医疗体系各方的变革和提升。但是新的医疗技术在很多方面都不会取代医疗工作者,毕竟医者人心,这点机器是永远替代不了的。

3. 人工智能对医疗领域的影响

人工智能对医疗领域的影响 
  
 第一:基于计算机视觉技术对医疗影像智能诊断
  
 人工智能技术在医疗影像的应用主要指通过计算机视觉技术对医疗影像进行快速读片和智能诊断。医疗影像数据是医疗数据的重要组成部分,人工智能技术能够通过快速准确地标记特定异常结构来提高图像分析的效率,以供放射科医师参考。提高图像分析效率,可让放射学家腾出更多的时间聚焦在需要更多解读或判断的内容审阅上,从而有望缓解放射科医生供给缺口问题。
  
 第二:基于语音识别技术的人工智能虚拟助理
  
 电子病历记录医生与病人的交互过程以及病情发展情况的电子化病情档案,包含病案首页、检验结果、住院记录、手术记录、医嘱等信息。语音识别技术为医生书写病历,为普通用户在医院导诊提供了极大的便利。通过语音识别、自然语言处理等技术,将患者的病症描述与标准的医学指南作对比,为用户提供医疗咨询、自诊、导诊等服务。智能语音录入可以解放医生的双手,帮助医生通过语音输入完成查阅资料、文献精准推送等工作,并将医生口述的医嘱按照患者基本信息、检查史、病史、检查指标、检查结果等形式形成结构化的电子病历,大幅提升了医生的工作效率。
  
 第三:从事医疗或辅助医疗的智能医用机器人
  
 医用机器人种类很多,按照其用途不同,有临床医疗用机器人、护理机器人、医用教学机器人和为残疾人服务机器人等。随着我国医疗领域机器人应用的逐渐认可和各诊疗阶段应用的普及,医用机器人尤其是手术机器人,已经成为机器人领域的“高需求产品”。在传统手术中,医生需要长时间手持手术工具并保持高度紧张状态,手术机器人的广泛使用对医疗技术有了极大提升。手术机器人视野更加开阔,手术操作更加精准,有利于患者伤口愈合,减小创伤面和失血量,减轻疼痛等。
  
 第四:分析海量文献信息加快药物研发
  
 人工智能助力药物研发,可大大缩短药物研发时间、提高研发效率并控制研发成本。目前我国制药企业纷纷布局AI领域,主要应用在新药发现和临床试验阶段。对于药物研发工作者来说,他们没有时间和精力关注所有新发表的研究成果和大量新药的信息,而人工智能技术恰恰可以从这些散乱无章的海量信息中提取出能够推动药物研发的知识,提出新的可以被验证的假说,从而加速药物研发的过程。

人工智能对医疗领域的影响

4. 人工智能何时能颠覆医疗界?

人工智能和机器学习被预言为下一代工业革命的一部分,在接下来的十年中,它们能为商业和工业节省亿万美元。
科技巨头谷歌(Google)、脸书网(Facebook)、苹果(Apple)、IBM以及其他公司正在把人工智能应用到各种各样的数据中。
机器学习技术被应用于语言实时翻译等领域,甚至被用来在线识别猫的图像。
那么,为什么工智能还没有被如此广泛地应用于医疗领域呢?
放射科医生仍然依靠观察核磁共振(MRI)影像或X光片来诊断疾病,尽管IBM和其他公司致力于解决这个问题,但医生仍然不能通过AI(人工智能)来引导或帮助他们诊断疾病。
机器学习技术面临的挑战
机器学习技术已经存在了几十年,最近出现的“深度学习”技术也在不断推动人工智能前进。深度学习网络是由类神经元单元组成的层状结构,它可以识别出数据中的模型。
这个过程通过以下方式完成:反复将数据和正确答案输入网络,直到其内部参数——连接到人工神经元的权重——被优化。如果训练数据来自于现实生活,网络可以很好地归纳总结,当输入新数据的时候,它也能给出正确答案。
因此,学习阶段需要大量多种情况下的数据库以及相应的答案。要升级网络的参数需要数百万的记录和数十亿的计算,这些通常要在超级计算机上完成,耗时几天或几周。
这就是其尚不能在医疗上应用的原因:数据库样本还不够庞大以及用于学习的正确答案是不明确的甚至是未知的。
我们需要更好、更大的数据库
人类身体的功能——解剖学特性和变异性是非常复杂的。同时,由基因调节或引起的疾病会提高其复杂性,这对每个人来说都是独一无二的且难以通过训练而改善。
另外,医疗数据方面也存在着问题,因为要精准地测量生物过程而不引入多余的变化是非常困难的。
其他困难还有在一个病人身上存在着多种疾病(即共病)会混淆预测。生活方式和环境因素也起了重要作用,但这些数据却很难获得。结果就是我们需要非常庞大的医疗数据库。
随着全世界的研究越来越多,这一问题逐步得以解决。例如英国的“生物银行”准备扫描100,000名参与者。
其它的还有美国的“阿兹海默病神经影像学计划”(ADNI)和 “澳大利亚老年人影像学、生物标记和生活方式研究组织”(AIBL),十几年来他们已跟踪一千多名受试者。
政府也开始成立一些项目,例如“美国癌症登月计划”(American Cancer Moonshot)。其目标是建立国家癌症数据生态系统,因此研究人员、医生和病人可以在“促进有效的数据分析”原则的指导下提供数据。同样,“澳大利亚基因组健康联盟”(Australian Genomics Health Alliance)致力于汇集并分享基因组信息。
最终,部署在全世界的电子病例系统可以提供广泛的高质量数据库。除了实现预期的效率提高,使用机器学习技术挖掘大量人口的临床数据的潜力是也巨大的。一些公司(如谷歌)迫切希望获取这些数据。
机器需要学习什么还不明确
复杂的医疗决策通常是由专家团队达成一致意见后给出的,而不是一件确定的事。
当扫描结果含有模糊区域或只能观察到非常细微的特征的时候,在解释疾病方面放射科医生之间可能会有不同意见。从含有误差的检验结果中得出诊断,或者疾病由未知的基因调控时,往往依赖于隐性知识和经验而不是明确的事实。
甚至有时,正确的答案根本无法获得。例如,无法通过脑部核磁共振测量某个结构的尺寸,甚至通过解剖尸体也不行,因为尸体组织的结构和尺寸在死后会发生改变。
因此机器可以知道照片中包含一只猫是因为用户通过社交平台已经确定地标记过成千上万张图片,或者告诉了谷歌如何识别涂鸦。
通过核磁共振的方式测量大脑结构的尺寸是一项更加困难的任务,因为没有人知道答案,只有几位专家的共同意见组合在一起才是最佳结果,而且花费巨大。
为了解决这个难题出现了一些新技术。包含概率论(如贝叶斯定理)的数学模型可以根据不确定性学习。
无监督方法可以在不需要知道真实答案的条件下识别数据中的模型,但解释结果却不一定正确。
另一种方法是迁移学习,也就是说,机器可以学习大量的、不同的但是具有相关性的数据库,但训练的答案是已知的。
深度学习在医学上的应用已经非常成功。在一些科学会议上,利用各项技术对公布的数据库进行处理,并在会议期间发布对提交结果的评估报告,深度学习技术总是能获得第一名。
在澳大利亚联邦科学与工业研究组织(CSIRO)我们已经研发了CapAIBL(来自AIBL的PET结果计算分析技术)来分析脑部正电子发射型计算机断层显像(PET)获得的3D图像。
利用包含许多正常人和阿兹海默病人的扫描结果的数据库,这种方法可以学习该病的特征。之后,它就可以在新的病人扫描结果中识别出该特征。生成的临床报告可以帮助医生更加快速、可靠地诊断疾病。
使用机器学习技术的自动图像分析功能可以把一个通过正电子发射型计算机断层显像(PET)得到的3D图像

自动量化成定量的报告显示。当医生诊断病人时可以当作参考。(图片来源:CSIRO,作者提供)
在上例中,CapAIBL技术被应用于识别阿兹海默病人扫描图像中的淀粉样蛋白斑。红色表示大脑中淀粉样蛋白沉积增多——这是阿兹海默病的征兆。
因果关系的问题
也许最困难的地方是理解因果关系。分析以前的数据容易导致学习到伪相关性而漏掉了疾病或治疗效果的根本原因。传统上,随机临床试验提供的证据在不同个体的选择上具有优势,但它们还没有受益于人工智能的潜力。
在未来,新的设计(如临床试验平台)可能会解决这个问题,并且可以为机器学习技术学习证据而不只是联系做好准备。人们正在构建庞大的医学数据库,发展能够克服缺乏确定性结果的技术,寻找建立因果联系的新方法。
该领域发展很快,而且在提升效率和医疗卫生水平方面存在巨大的潜力。事实上很多企业正在试图将这一领域商业化。创业公司(如Enlitic)、大型公司(如IBM)甚至小型企业(如Resonance Health)都许诺要变革医疗卫生领域。我们已经取得了显著的成果,但前方依然充满挑战。
翻译:么宇辉;审校:杨玉洁
注:所有文章均由中国数字科技馆合作单位或个人授权发布,转载请注明出处。
最新文章
热门文章
推荐阅读