Apache Flink快速入门-基本架构、核心概念和运行流程

2024-05-09 21:52

1. Apache Flink快速入门-基本架构、核心概念和运行流程

 
   Flink是一个基于流计算的分布式引擎,以前的名字叫stratosphere,从2010年开始在德国一所大学里发起,也是有好几年的 历史 了,2014年来借鉴了社区其它一些项目的理念,快速发展并且进入了Apache顶级孵化器,后来更名为Flink。
    Flink在德语中是快速和灵敏的意思 ,用来体现流式数据处理速度快和灵活性强等特点。
   
   Flink提供了同时支持高吞吐、低延迟和exactly-once 语义的实时计算能力,另外Flink 还提供了基于流式计算引擎处理批量数据的计算能力,真正意义上实现了流批统一。
   Flink 独立于Apache Hadoop,且能在没有任何 Hadoop 依赖的情况下运行。
   但是,Flink 可以很好的集成很多 Hadoop 组件,例如 HDFS、YARN 或 HBase。 当与这些组件一起运行时,Flink 可以从 HDFS 读取数据,或写入结果和检查点(checkpoint)/快照(snapshot)数据到 HDFS 。 Flink 还可以通过 YARN 轻松部署,并与 YARN 和 HDFS Kerberos 安全模块集成。
   Flink具有先进的架构理念、诸多的优秀特性,以及完善的编程接口。
   Flink的具体优势有如下几点:
   (1)同时支持高吞吐、低延迟、高性能;
   (2)支持事件时间(Event Time)概念;
   事件时间的语义使流计算的结果更加精确,尤其在事件到达无序或者延迟的情况下,保持了事件原本产生时的时序性,尽可能避免网络传输或硬件系统的影响。
   (3)支持有状态计算;
   所谓状态就是在流计算过程中,将算子的中间结果数据保存在内存或者文件系统中,等下一个事件进入算子后,可以从之前的状态中获取中间结果,计算当前的结果,从而无需每次都基于全部的原始数据来统计结果。
   (4)支持高度灵活的窗口(Window)操作;
   (5)基于轻量级分布式快照(Snapshot)实现的容错;
   (6)基于JVM实现独立的内存管理;
   (7)Save Points(保存点);
   
   保存点是手动触发的,触发时会将它写入状态后端(State Backends)。Savepoints的实现也是依赖Checkpoint的机制。Flink 程序在执行中会周期性的在worker 节点上进行快照并生成Checkpoint。因为任务恢复的时候只需要最后一个完成的Checkpoint的,所以旧有的Checkpoint会在新的Checkpoint完成时被丢弃。Savepoints和周期性的Checkpoint非常的类似,只是有两个重要的不同。一个是由用户触发,而且不会随着新的Checkpoint生成而被丢弃。
   在Flink整个软件架构体系中,统一遵循了分层的架构设计理念,在降低系统耦合度的同时,为上层用户构建Flink应用提供了丰富且友好的接口。
   整个Flink的架构体系可以分为三层:
   
   Deployment层: 该层主要涉及了Flink的部署模式,Flink支持多种部署模式:本地、集群(Standalone/YARN),云(GCE/EC2),Kubernetes等。
   Runtime层:Runtime层提供了支持Flink计算的全部核心实现,比如:支持分布式Stream处理、JobGraph到ExecutionGraph的映射、调度等等,为上层API层提供基础服务。
   API层: 主要实现了面向无界Stream的流处理和面向Batch的批处理API,其中面向流处理对应DataStream API,面向批处理对应DataSet API。
   Libraries层:该层也可以称为Flink应用框架层,根据API层的划分,在API层之上构建的满足特定应用的计算框架,也分别对应于面向流处理和面向批处理两类。
   核心概念:Job Managers,Task Managers,Clients
   Flink也是典型的master-slave分布式架构。Flink的运行时,由两种类型的进程组成:
   Client: Client不是运行时和程序执行的一部分,它是用来准备和提交数据流到JobManagers。之后,可以断开连接或者保持连接以获取任务的状态信息。
   
   当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager。由 Client 提交任务给 JobManager, JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。 TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。
   每个Worker(Task Manager)是一个JVM进程,通常会在单独的线程里执行一个或者多个子任务。为了控制一个Worker能够接受多少个任务,会在Worker上抽象多个Task Slot (至少一个)。
   只有一个slot的TaskManager意味着每个任务组运行在一个单独JVM中。 在拥有多个slot的TaskManager上,subtask共用JVM,可以共用TCP连接和心跳消息,同时可以共用一些数据集和数据结构,从而减小任务的开销。
   
   Flink的任务运行其实是多线程的方式,这和MapReduce多JVM进程的方式有很大的区别,Flink能够极大提高CPU使用效率,在多个任务之间通过TaskSlot方式共享系统资源,每个TaskManager中通过管理多个TaskSlot资源池对资源进行有效管理。
   
   

Apache Flink快速入门-基本架构、核心概念和运行流程

2. 转载:阿里巴巴为什么选择Apache Flink?

 
   本文主要整理自阿里巴巴计算平台事业部资深技术专家莫问在云栖大会的演讲。
    合抱之木,生于毫末 
   随着人工智能时代的降临,数据量的爆发,在典型的大数据的业务场景下数据业务最通用的做法是:选用批处理的技术处理全量数据,采用流式计算处理实时增量数据。在绝大多数的业务场景之下,用户的业务逻辑在批处理和流处理之中往往是相同的。但是,用户用于批处理和流处理的两套计算引擎是不同的。
   因此,用户通常需要写两套代码。毫无疑问,这带来了一些额外的负担和成本。阿里巴巴的商品数据处理就经常需要面对增量和全量两套不同的业务流程问题,所以阿里就在想,我们能不能有一套统一的大数据引擎技术,用户只需要根据自己的业务逻辑开发一套代码。这样在各种不同的场景下,不管是全量数据还是增量数据,亦或者实时处理,一套方案即可全部支持, 这就是阿里选择Flink的背景和初衷 。
   
   目前开源大数据计算引擎有很多选择,流计算如Storm,Samza,Flink,Kafka Stream等,批处理如Spark,Hive,Pig,Flink等。而同时支持流处理和批处理的计算引擎,只有两种选择:一个是Apache Spark,一个是Apache Flink。
   从技术,生态等各方面的综合考虑。首先,Spark的技术理念是基于批来模拟流的计算。而Flink则完全相反,它采用的是基于流计算来模拟批计算。
   从技术发展方向看,用批来模拟流有一定的技术局限性,并且这个局限性可能很难突破。而Flink基于流来模拟批,在技术上有更好的扩展性。从长远来看,阿里决定用Flink做一个统一的、通用的大数据引擎作为未来的选型。
   Flink是一个低延迟、高吞吐、统一的大数据计算引擎。在阿里巴巴的生产环境中,Flink的计算平台可以实现毫秒级的延迟情况下,每秒钟处理上亿次的消息或者事件。同时Flink提供了一个Exactly-once的一致性语义。保证了数据的正确性。这样就使得Flink大数据引擎可以提供金融级的数据处理能力。
   
    Flink在阿里的现状 
   基于Apache Flink在阿里巴巴搭建的平台于2016年正式上线,并从阿里巴巴的搜索和推荐这两大场景开始实现。目前阿里巴巴所有的业务,包括阿里巴巴所有子公司都采用了基于Flink搭建的实时计算平台。同时Flink计算平台运行在开源的Hadoop集群之上。采用Hadoop的YARN做为资源管理调度,以 HDFS作为数据存储。因此,Flink可以和开源大数据软件Hadoop无缝对接。
   
   目前,这套基于Flink搭建的实时计算平台不仅服务于阿里巴巴集团内部,而且通过阿里云的云产品API向整个开发者生态提供基于Flink的云产品支持。
    Flink在阿里巴巴的大规模应用,表现如何? 
    规模: 一个系统是否成熟,规模是重要指标,Flink最初上线阿里巴巴只有数百台服务器,目前规模已达上万台,此等规模在全球范围内也是屈指可数;
    状态数据: 基于Flink,内部积累起来的状态数据已经是PB级别规模;
    Events: 如今每天在Flink的计算平台上,处理的数据已经超过万亿条;
    PS: 在峰值期间可以承担每秒超过4.72亿次的访问,最典型的应用场景是阿里巴巴双11大屏;
   
    Flink的发展之路 
   接下来从开源技术的角度,来谈一谈Apache Flink是如何诞生的,它是如何成长的?以及在成长的这个关键的时间点阿里是如何进入的?并对它做出了那些贡献和支持?
   Flink诞生于欧洲的一个大数据研究项目StratoSphere。该项目是柏林工业大学的一个研究性项目。早期,Flink是做Batch计算的,但是在2014年,StratoSphere里面的核心成员孵化出Flink,同年将Flink捐赠Apache,并在后来成为Apache的顶级大数据项目,同时Flink计算的主流方向被定位为Streaming,即用流式计算来做所有大数据的计算,这就是Flink技术诞生的背景。
   
   2014年Flink作为主攻流计算的大数据引擎开始在开源大数据行业内崭露头角。区别于Storm,Spark Streaming以及其他流式计算引擎的是:它不仅是一个高吞吐、低延迟的计算引擎,同时还提供很多高级的功能。比如它提供了有状态的计算,支持状态管理,支持强一致性的数据语义以及支持Event Time,WaterMark对消息乱序的处理。
   
    Flink核心概念以及基本理念 
   Flink最区别于其他流计算引擎的,其实就是状态管理。
   什么是状态?例如开发一套流计算的系统或者任务做数据处理,可能经常要对数据进行统计,如Sum,Count,Min,Max,这些值是需要存储的。因为要不断更新,这些值或者变量就可以理解为一种状态。如果数据源是在读取Kafka,RocketMQ,可能要记录读取到什么位置,并记录Offset,这些Offset变量都是要计算的状态。
   Flink提供了内置的状态管理,可以把这些状态存储在Flink内部,而不需要把它存储在外部系统。这样做的好处是第一降低了计算引擎对外部系统的依赖以及部署,使运维更加简单;第二,对性能带来了极大的提升:如果通过外部去访问,如Redis,HBase它一定是通过网络及RPC。如果通过Flink内部去访问,它只通过自身的进程去访问这些变量。同时Flink会定期将这些状态做Checkpoint持久化,把Checkpoint存储到一个分布式的持久化系统中,比如HDFS。这样的话,当Flink的任务出现任何故障时,它都会从最近的一次Checkpoint将整个流的状态进行恢复,然后继续运行它的流处理。对用户没有任何数据上的影响。
   Flink是如何做到在Checkpoint恢复过程中没有任何数据的丢失和数据的冗余?来保证精准计算的?
   这其中原因是Flink利用了一套非常经典的Chandy-Lamport算法,它的核心思想是把这个流计算看成一个流式的拓扑,定期从这个拓扑的头部Source点开始插入特殊的Barries,从上游开始不断的向下游广播这个Barries。每一个节点收到所有的Barries,会将State做一次Snapshot,当每个节点都做完Snapshot之后,整个拓扑就算完整的做完了一次Checkpoint。接下来不管出现任何故障,都会从最近的Checkpoint进行恢复。
   
   Flink利用这套经典的算法,保证了强一致性的语义。这也是Flink与其他无状态流计算引擎的核心区别。
   下面介绍Flink是如何解决乱序问题的。比如星球大战的播放顺序,如果按照上映的时间观看,可能会发现故事在跳跃。
   
   在流计算中,与这个例子是非常类似的。所有消息到来的时间,和它真正发生在源头,在线系统Log当中的时间是不一致的。在流处理当中,希望是按消息真正发生在源头的顺序进行处理,不希望是真正到达程序里的时间来处理。Flink提供了Event Time和WaterMark的一些先进技术来解决乱序的问题。使得用户可以有序的处理这个消息。这是Flink一个很重要的特点。
   
   接下来要介绍的是Flink启动时的核心理念和核心概念,这是Flink发展的第一个阶段;第二个阶段时间是2015年和2017年,这个阶段也是Flink发展以及阿里巴巴介入的时间。故事源于2015年年中,我们在搜索事业部的一次调研。当时阿里有自己的批处理技术和流计算技术,有自研的,也有开源的。但是,为了思考下一代大数据引擎的方向以及未来趋势,我们做了很多新技术的调研。
   结合大量调研结果,我们最后得出的结论是:解决通用大数据计算需求,批流融合的计算引擎,才是大数据技术的发展方向,并且最终我们选择了Flink。
   但2015年的Flink还不够成熟,不管是规模还是稳定性尚未经历实践。最后我们决定在阿里内部建立一个Flink分支,对Flink做大量的修改和完善,让其适应阿里巴巴这种超大规模的业务场景。在这个过程当中,我们团队不仅对Flink在性能和稳定性上做出了很多改进和优化,同时在核心架构和功能上也进行了大量创新和改进,并将其贡献给社区,例如:Flink新的分布式架构,增量Checkpoint机制,基于Credit-based的网络流控机制和Streaming SQL等。
   
    阿里巴巴对Flink社区的贡献 
   我们举两个设计案例,第一个是阿里巴巴重构了Flink的分布式架构,将Flink的Job调度和资源管理做了一个清晰的分层和解耦。这样做的首要好处是Flink可以原生的跑在各种不同的开源资源管理器上。经过这套分布式架构的改进,Flink可以原生地跑在Hadoop Yarn和Kubernetes这两个最常见的资源管理系统之上。同时将Flink的任务调度从集中式调度改为了分布式调度,这样Flink就可以支持更大规模的集群,以及得到更好的资源隔离。
   
   另一个是实现了增量的Checkpoint机制,因为Flink提供了有状态的计算和定期的Checkpoint机制,如果内部的数据越来越多,不停地做Checkpoint,Checkpoint会越来越大,最后可能导致做不出来。提供了增量的Checkpoint后,Flink会自动地发现哪些数据是增量变化,哪些数据是被修改了。同时只将这些修改的数据进行持久化。这样Checkpoint不会随着时间的运行而越来越难做,整个系统的性能会非常地平稳,这也是我们贡献给社区的一个很重大的特性。
   
   经过2015年到2017年对Flink Streaming的能力完善,Flink社区也逐渐成熟起来。Flink也成为在Streaming领域最主流的计算引擎。因为Flink最早期想做一个流批统一的大数据引擎,2018年已经启动这项工作,为了实现这个目标,阿里巴巴提出了新的统一API架构,统一SQL解决方案,同时流计算的各种功能得到完善后,我们认为批计算也需要各种各样的完善。无论在任务调度层,还是在数据Shuffle层,在容错性,易用性上,都需要完善很多工作。
   
   篇幅原因,下面主要和大家分享两点:
    ● 统一 API Stack
    ● 统一 SQL方案
   先来看下目前Flink API Stack的一个现状,调研过Flink或者使用过Flink的开发者应该知道。Flink有2套基础的API,一套是DataStream,一套是DataSet。DataStream API是针对流式处理的用户提供,DataSet API是针对批处理用户提供,但是这两套API的执行路径是完全不一样的,甚至需要生成不同的Task去执行。所以这跟得到统一的API是有冲突的,而且这个也是不完善的,不是最终的解法。在Runtime之上首先是要有一个批流统一融合的基础API层,我们希望可以统一API层。
   因此,我们在新架构中将采用一个DAG(有限无环图)API,作为一个批流统一的API层。对于这个有限无环图,批计算和流计算不需要泾渭分明的表达出来。只需要让开发者在不同的节点,不同的边上定义不同的属性,来规划数据是流属性还是批属性。整个拓扑是可以融合批流统一的语义表达,整个计算无需区分是流计算还是批计算,只需要表达自己的需求。有了这套API后,Flink的API Stack将得到统一。
   
   除了统一的基础API层和统一的API Stack外,同样在上层统一SQL的解决方案。流和批的SQL,可以认为流计算有数据源,批计算也有数据源,我们可以将这两种源都模拟成数据表。可以认为流数据的数据源是一张不断更新的数据表,对于批处理的数据源可以认为是一张相对静止的表,没有更新的数据表。整个数据处理可以当做SQL的一个Query,最终产生的结果也可以模拟成一个结果表。
   对于流计算而言,它的结果表是一张不断更新的结果表。对于批处理而言,它的结果表是相当于一次更新完成的结果表。从整个SOL语义上表达,流和批是可以统一的。此外,不管是流式SQL,还是批处理SQL,都可以用同一个Query来表达复用。这样以来流批都可以用同一个Query优化或者解析。甚至很多流和批的算子都是可以复用的。
   
    Flink的未来方向 
   首先,阿里巴巴还是要立足于Flink的本质,去做一个全能的统一大数据计算引擎。将它在生态和场景上进行落地。目前Flink已经是一个主流的流计算引擎,很多互联网公司已经达成了共识:Flink是大数据的未来,是最好的流计算引擎。下一步很重要的工作是让Flink在批计算上有所突破。在更多的场景下落地,成为一种主流的批计算引擎。然后进一步在流和批之间进行无缝的切换,流和批的界限越来越模糊。用Flink,在一个计算中,既可以有流计算,又可以有批计算。
   第二个方向就是Flink的生态上有更多语言的支持,不仅仅是Java,Scala语言,甚至是机器学习下用的Python,Go语言。未来我们希望能用更多丰富的语言来开发Flink计算的任务,来描述计算逻辑,并和更多的生态进行对接。
   
   最后不得不说AI,因为现在很多大数据计算的需求和数据量都是在支持很火爆的AI场景,所以在Flink流批生态完善的基础上,将继续往上走,完善上层Flink的Machine Learning算法库,同时Flink往上层也会向成熟的机器学习,深度学习去集成。比如可以做Tensorflow On Flink, 让大数据的ETL数据处理和机器学习的Feature计算和特征计算,训练的计算等进行集成,让开发者能够同时享受到多种生态给大家带来的好处。
   

3. 如何选择Apache Spark和Apache Flink

我们是否还需要另外一个新的数据处理引擎?当我第一次听到flink的时候这是我是非常怀疑的。在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。自从Apache spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀疑态度。
不过因为好奇,我花费了数个星期在尝试了解flink。一开始仔细看了flink的几个例子,感觉和spark非常类似,心理就倾向于认为flink又是一个模仿spark的框架。但是随着了解的深入,这些API体现了一些flink的新奇的思路,这些思路还是和spark有着比较明显的区别的。我对这些思路有些着迷了,所以花费了更多的时间在这上面。
        flink中的很多思路,例如内存管理,dataset API都已经出现在spark中并且已经证明    这些思路是非常靠谱的。所以,深入了解flink也许可以帮助我们分布式数据处理的未来之路是怎样的
  在后面的文章里,我会把自己作为一个spark开发者对flink的第一感受写出来。因为我已经在spark上干了2年多了,但是只在flink上接触了2到3周,所以必然存在一些bias,所以大家也带着怀疑和批判的角度来看这篇文章吧。
Apache Flink是什么
flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理。这个目标看起来和spark和类似。没错,flink也在尝试解决spark在解决的问题。这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用。所以,flink和spark的目标差别并不大,他们最主要的区别在于实现的细节。
后面我会重点从不同的角度对比这两者。
Apache Spark vs Apache Flink
1.抽象  Abstraction
spark中,对于批处理我们有RDD,对于流式,我们有DStream,不过内部实际还是RDD.所以所有的数据表示本质上还是RDD抽象。
后面我会重点从不同的角度对比这两者。在flink中,对于批处理有DataSet,对于流式我们有DataStreams。看起来和spark类似,他们的不同点在于:
一)DataSet在运行时是表现为运行计划(runtime plans)的
在spark中,RDD在运行时是表现为java objects的。通过引入Tungsten,这块有了些许的改变。但是在flink中是被表现为logical plan(逻辑计划)的,听起来很熟悉?没错,就是类似于spark中的dataframes。所以在flink中你使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。
   flink中的Dataset,对标spark中的Dataframe,在运行前会经过优化。
在spark 1.6,dataset API已经被引入spark了,也许最终会取代RDD 抽象。
二)Dataset和DataStream是独立的API
在spark中,所有不同的API,例如DStream,Dataframe都是基于RDD抽象的。但是在flink中,Dataset和DataStream是同一个公用的引擎之上两个独立的抽象。所以你不能把这两者的行为合并在一起操作,当然,flink社区目前在朝这个方向努力(https://issues.apache.org/jira/browse/FLINK-2320),但是目前还不能轻易断言最后的结果。
2.内存管理
   一直到1.5版本,spark都是试用java的内存管理来做数据缓存,明显很容易导致OOM或者gc。所以从1.5开始,spark开始转向精确的控制内存的使用,这就是tungsten项目了
   flink从第一天开始就坚持自己控制内存试用。这个也是启发了spark走这条路的原因之一。flink除了把数据存在自己管理的内存以外,还直接操作二进制数据。在spark中,从1.5开始,所有的dataframe操作都是直接作用在tungsten的二进制数据上。

3.语言实现
spark是用scala来实现的,它提供了Java,Python和R的编程接口。
flink是java实现的,当然同样提供了Scala API
所以从语言的角度来看,spark要更丰富一些。因为我已经转移到scala很久了,所以不太清楚这两者的java api实现情况。
4.API
spark和flink都在模仿scala的collection API.所以从表面看起来,两者都很类似。下面是分别用RDD和DataSet API实现的word count

// Spark wordcount
object WordCount {

  def main(args: Array[String]) {

    val env = new SparkContext("local","wordCount")

    val data = List("hi","how are you","hi")

    val dataSet = env.parallelize(data)

    val words = dataSet.flatMap(value => value.split("\\s+"))

    val mappedWords = words.map(value => (value,1))

    val sum = mappedWords.reduceByKey(_+_)

    println(sum.collect())

  }

}

// Flink wordcount
object WordCount {

  def main(args: Array[String]) {

    val env = ExecutionEnvironment.getExecutionEnvironment

    val data = List("hi","how are you","hi")

    val dataSet = env.fromCollection(data)

    val words = dataSet.flatMap(value => value.split("\\s+"))

    val mappedWords = words.map(value => (value,1))

    val grouped = mappedWords.groupBy(0)

    val sum = grouped.sum(1)

    println(sum.collect())
  }

}
不知道是偶然还是故意的,API都长得很像,这样很方便开发者从一个引擎切换到另外一个引擎。我感觉以后这种Collection API会成为写data pipeline的标配。
Steaming
spark把streaming看成是更快的批处理,而flink把批处理看成streaming的special case。这里面的思路决定了各自的方向,其中两者的差异点有如下这些:

 实时 vs 近实时的角度
flink提供了基于每个事件的流式处理机制,所以可以被认为是一个真正的流式计算。它非常像storm的model。
而spark,不是基于事件的粒度,而是用小批量来模拟流式,也就是多个事件的集合。所以spark被认为是近实时的处理系统。

  Spark streaming 是更快的批处理,而Flink Batch是有限数据的流式计算。
虽然大部分应用对准实时是可以接受的,但是也还是有很多应用需要event level的流式计算。这些应用更愿意选择storm而非spark streaming,现在,flink也许是一个更好的选择。

    流式计算和批处理计算的表示
       spark对于批处理和流式计算,都是用的相同的抽象:RDD,这样很方便这两种计算合并起来表示。而flink这两者分为了DataSet和DataStream,相比spark,这个设计算是一个糟糕的设计。

对 windowing 的支持
         因为spark的小批量机制,spark对于windowing的支持非常有限。只能基于process time,且只能对batches来做window。
           而Flink对window的支持非常到位,且Flink对windowing API的支持是相当给力的,允许基于process time,data time,record 来做windowing。
          我不太确定spark是否能引入这些API,不过到目前为止,Flink的windowing支持是要比spark好的。
          Steaming这部分flink胜

SQL interface
目前spark-sql是spark里面最活跃的组件之一,Spark提供了类似Hive的sql和Dataframe这种DSL来查询结构化数据,API很成熟,在流式计算中使用很广,预计在流式计算中也会发展得很快。
至于flink,到目前为止,Flink Table API只支持类似DataFrame这种DSL,并且还是处于beta状态,社区有计划增加SQL 的interface,但是目前还不确定什么时候才能在框架中用上。
所以这个部分,spark胜出。

Data source Integration

Spark的数据源 API是整个框架中最好的,支持的数据源包括NoSql db,parquet,ORC等,并且支持一些高级的操作,例如predicate push down
Flink目前还依赖map/reduce InputFormat来做数据源聚合。
这一场spark胜

Iterative processing
spark对机器学习的支持较好,因为可以在spark中利用内存cache来加速机器学习算法。
但是大部分机器学习算法其实是一个有环的数据流,但是在spark中,实际是用无环图来表示的,一般的分布式处理引擎都是不鼓励试用有环图的。
但是flink这里又有点不一样,flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率。
这一点flink胜出。

Stream as platform vs Batch as Platform
Spark诞生在Map/Reduce的时代,数据都是以文件的形式保存在磁盘中,这样非常方便做容错处理。
Flink把纯流式数据计算引入大数据时代,无疑给业界带来了一股清新的空气。这个idea非常类似akka-streams这种。
成熟度
目前的确有一部分吃螃蟹的用户已经在生产环境中使用flink了,不过从我的眼光来看,Flink还在发展中,还需要时间来成熟。
结论
目前Spark相比Flink是一个更为成熟的计算框架,但是Flink的很多思路很不错,Spark社区也意识到了这一点,并且逐渐在采用Flink中的好的设计思路,所以学习一下Flink能让你了解一下Streaming这方面的更迷人的思路。

如何选择Apache Spark和Apache Flink