简述有线局域网和无线局域网的组建

2024-05-18 00:11

1. 简述有线局域网和无线局域网的组建

组建局域网
    局域网的基本设计通常可以分为5个步骤:
    1  确定用户需求
    2  设计局域网类型
    3  确定局域网的带宽和网络设备类型
    4  进行局域网布线方案设计
    5  设计局域网服务设施    确定用户需求
    ●确定用户需求,首先应该调查清楚下列基本问题:
    ●要建局域网的机构的工作性质、业务范围和服务对象。
    ●局域网建设机构的目前的用户数量,目前准备入网的节点计算机数量,预计将来的发展会达到的规模。
     ●规划建设局域网的最终分布范围。
    ●局域网建设机构是否有建立专门部门(如网络中心、信息中心或数据中心)进行信息业务处理的需求。
    ●局域网是否有多媒体业务的需求。局域网是否考虑将机构的电信业务(电话、传真)与数据业务集成到计算机网络中统一处理。局域网建设机构对网络安全有哪些需求,对网络与信息的保密有哪些需求,要求的程度是什么。    设计局域网类型、分布构架
    首先确定适合的局域网类型和分布构架。目前在局域网建设中,由于以太网性能优良、价格低廉、升级和维护方便,通常都将它作为首选。是选择百兆位以太网还是千兆位以太网要根据用户的需求和条件决定。如果网络建设机构存在布线方面的困难,也可以选择无线局域网。    网络分布架构    ●网络分布架构与入网计算机的节点数量和网络分布情况直接相关。    ●如果所建设的局域网在规模上是一个由数百台至上千台入网节点计算机组成的网络,在空间上跨越在一个园区的多个建筑物,则称这样的网络为大型局域网。对于大型局域网,通常在设计上将它组织成为核心层、分布层和接入层分别考虑。    ●接入层节点直接连接用户计算机,它通常是一个部门或一个楼层的交换机;分布层的每个节点可以连接多个接入层节点,通常它是一个建筑物内连接多个楼层交换机或部门交换机的总交换机;核心层节点在逻辑上只有一个,它连接多个分布层交换机,通常是一个园区中连接多个建筑物的总交换机的核心网络设备。    ●如果所建设的局域网在规模上是由几十台至几百台入网节点计算机组成的网络,在空间上分布在一座建筑物的多个楼层或多个部门,这样的网络称为中小型局域网。    ●在设计上常常分为核心层和接入层两层考虑,接入层节点直接连接进核心层节点。    ●如果所建设的局域网是由空间上集中的几十台计算机构成的小型局域网,在逻辑上可以不用考虑分层,使用一组或一台交换机连接所有的入网节点即可。    确定局域网的带宽
    ●接着确定局域网的带宽。一般而言,百兆位以太网足能够满足网络数据流量不是很大的中小型局域网的需要。如果入网节点计算机的数量在百台以上且传输的信息量很大,或者准备在局域网上运行实时多媒体业务,选择千兆位以太网。
     
    选择网络主干设备
    ●最后选择网络主干设备的类型。建议网络主干设备或核心层设备选择具备第3层交换功能的高性能主干交换机。
    ●如果要求局域网主干具备高可靠性和可用性,还应该考虑核心交换机的冗余与热备份方案设计。分布层或接入层的网络设备类型,通常选择普通交换机即可,交换机的性能和数量由入网计算机的数量和网络拓扑结构决定。组网实例
    ●北京轻工职业技术学院有教师和行政人员近百名,在校学生800人左右。校园内主要建筑物有综合楼、实验楼、办公楼、学生楼、教工宿舍等,共约720个信息点。在项目实施之前,该校用100M Hub作为主要网络连接设备,各网之间分割开来,不能互通。随着学校人员与规模不断扩张,对校园网的改建      校园网设计
    ●北京轻工职业技术学院校园网采用当今最为流行实用的千兆主干三级交换结构体系。在本方案中,主干网选择千兆以太网技术,它是以光纤通信和新的数据封装技术为核心的高速、大容量计算机网络通信技术,能在局域网络之间提供快速高带宽信道,彻底消除低速信道对计算机网络的制约。
    ●第一级是校园网的千兆骨干网络;
    ●第二级通过多模光纤上联核心交换机,再  向下通过超五类双绞线级联三级交换机;
    ●第三级交换机直接连接用户的计算机。
    ●按照这样的层次划分有以下特点:结构清晰,易于设计和管理,大大提高了网络的扩充能力;网络结构和实际应用的组织结构相一致,便于安全管理,减轻网络的数据流量;根据不同层次和实际经济承受能力,选择相应的网络设备和硬件设备,使投资更合理。    网络核心层的设计
    网络核心层是网络的中心,其功能是实现高性能的交换和传输。因此核心层设备应该是高性能的交换机,可实现高速度的交换传输,以连接服务器等核心设备;并且非常可靠,实现不间断工作。学校网络骨干采用一台Cisco 4003路由交换机作为核心交换机来连接各级交换机。由于轻工学院校园网应用了VOD点播系统,集成商将Cisco 4003的背板带宽增至64M,大大增加了网络的交换能力、系统的互动性和系统的实时性,该系统采用Cisco 2515路由器经过Cisco PIX512防火墙通过DDN专线上联广域网,实现校园网到Internet的高速接入。    网络分布层的设计
    ●分布层设备采用三台TCLS4226MFB用于二层交换,通过1000Base-SX光纤上联核心交换机,形成网络的高速骨干。S4226MFB以太网交换机是24+2规格结构,可用作网络交换机、网络节点交换机以太网络环境。这样的网络系统结构简单,同时融合了可伸缩的网络速率、性能、网络规模和基于策略的QoS服务。它可以提供多达16台的堆叠能力,充分满足用户对高密度端口的
    ●用户级交换机采用30台TCL S4124B,通过UPLINK端口上联二层交换S4226MFB,实现720个信息点100M到桌面的接入。TCL S4124B交换机有24个10/100M自适应端口,交换技术避免了使用集线器时多个用户共享网段造成的冲突和拥塞,大大提升了网络性能。
    ●S4226MFB提供划分VLAN(虚拟局域网)的功能,使网络管理员可以根据需要将用户划分为几个不同的组。这样既便于管理,又可以提高安全性。被划分到同一组的用户可以在VLAN组内部共享网络资源,并保证各组之间访问的独立性。S4226MFB最大支持256个基于端口或802.1Q标记的VLAN。 无线局域网解决方案
    无线局域网(Wireless local-area network,WLAN)就是在不采用传统电缆线的同时,提供传统有线局域网的所有功能,网络所需的基础设施不需要再埋在地下或隐藏在墙里,网络却能够随着实际需要移动或变化。    无线局域网技术的优点。
    1 无线局域网的通信范围不受环境条件的限制,,最大传输范围可达到几十公里。在有线局域网中,两个站点的距离在使用铜缆时被限制在500米,即使采用单模光纤也只能达到3000米,而无线局域网中两个站点间的距离目前可达到50公里,距离数公里的建筑物中的网络可以集成为同一个局域网。
    无线局域网的抗干扰性强、网络保密性好。对于有线局域网中的诸多安全问题,在无线局域网中基本上可以避免。而且相对于有线网络,无线局域网的组建、配置和维护较为容易,一般计算机工作人员都可以胜任网络的管理工作。    ●无线局域网的传输媒体
    ●传输介质
    ●红外线系统 无线电波
    ●无线网络采用的主要协议标准     ●802.11标准    ●蓝牙标准     ●家庭网络的HomeRF标准         无线局域网组网模式应用
    Infrastructure模式(带有无线接入点,如下图1所示)        这种模式通过数张无线网络卡(USB,PCI或PCMCIA接口)及一台无线网桥(AP),通过AP实现无线网络内部及无线网络与有线网络之间的互通 。    Ad-Hoc模式(点对点无线网)        多张无线网卡(USB,PCI或PCMCIA接口)可以自成网络,无需AP,组成一种临时性的松散的网络组织方式,实现点对点与点对多点连接。不过这种方式就不能连接外部网络    采用室外无线网桥进行连接

简述有线局域网和无线局域网的组建

2. 求无线局域网技术概述相关的论文,多谢了

  无线局域网的历史  说到无线网络的历史起源,可能比各位想像的还要早。无线网络的初步应用,可以追溯到五十年前的第二次世界大战期间,当时美国陆军采用无线电信号做资料的传输。他们研发出了一套无线电传输科技,并且采用相当高强度的加密技术。当初美军和盟军都广泛使用这项技术。这项技术让许多学者得到了灵感,在1971年时,夏威夷大学(UniversityofHawaii)的研究员创造了第一个基于封包式技术的无线电通讯网络,这被称作ALOHNET的网络,可以算是相当早期的无线局域网络(WLAN)。这最早的WLAN包括了7台计算机,它们采用双向星型拓扑(bi-directionalstartopology),横跨四座夏威夷的岛屿,中心计算机放置在瓦胡岛(OahuIsland)上。从这时开始,无线网络可说是正式诞生了。虽然目前几乎所有的局域网络(LAN)都仍旧是有线的架构,不过近年来无线网络的应用却日渐增加,主要应用在学术界(像是大学校园)、医疗界、制造业和仓储业等,而且相关的技术也一直在进步,对企业而言要转换到无线网络也更加容易、更加便宜了。  无线局域网的技术特点  无线局域网利用电磁波在空气中发送和接受数据,而无需线缆介质。无线局域网的数据传输速率现在已经能够达到11Mbps,传输距离可远至20km以上。它是对有线联网方式的一种补充和扩展,使网上的计算机具有可移动性,能快速方便地解决使用有线方式不易实现的网络联通问题。  1.无线局域网的优点  与有线网络相比,无线局域网具有以下优点:  安装便捷  一般在网络建设中,施工周期最长、对周边环境影响最大的,就是网络布线施工工程。在施工过程中,往往需要破墙掘地、穿线架管。而无线局域网最大的优势就是免去或减少了网络布线的工作量,一般只要安装一个或多个接入点AP(AccessPoint)设备,就可建立覆盖整个建筑或地区的局域网络。  使用灵活  在有线网络中,网络设备的安放位置受网络信息点位置的限制。而一旦无线局域网建成后,在无线网的信号覆盖区域内任何一个位置都可以接入网络。  经济节约  由于有线网络缺少灵活性,这就要求网络规划者尽可能地考虑未来发展的需要,这就往往导致预设大量利用率较低的信息点。而一旦网络的发展超出了设计规划,又要花费较多费用进行网络改造,而无线局域网可以避免或减少以上情况的发生。  易于扩展  无线局域网有多种配置方式,能够根据需要灵活选择。这样,无线局域网就能胜任从只有几个用户的小型局域网到上千用户的大型网络,并且能够提供像“漫游(Roaming)”等有线网络无法提供的特性。由于无线局域网具有多方面的优点,所以发展十分迅速。在最近几年里,无线局域网已经在医院、商店、工厂和学校等不适合网络布线的场合得到了广泛应用。
 2.无线局域网的相关技术  1).IEEE802.11标准无线局域网技术概述
|||  IEEE802.11是在1997年由大量的局域网以及计算机专家审定通过的标准。IEEE802.11规定了无线局域网在2.4GHz波段进行操作,这一波段被全球无线电法规实体定义为扩频使用波段。  1999年8月,802.11标准得到了进一步的完善和修订,包括用一个基于SNMP的MIB来取代原来基于OSI协议的MIB。另外还增加了两项内容,一是802.11a,它扩充了标准的物理层,频带为5GHz,采用QFSK调制方式,传输速率为6Mb/s-54Mb/s。它采用正交频分复用(OFDM)的独特扩频技术,可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。但是,采用该标准的产品目前还没有进入市场。另一种是802.11b标准,在2.4GHz频带,采用直接序列扩频(DSSS)技术和补偿编码键控(CCK)调制方式。该标准可提供11Mb/s的数据速率,还能够根据情况的变化,在11Mbps、5.5Mbps、2Mbps、1Mbps的不同速率之间自动切换。它从根本上改变无线局域网设计和应用现状,扩大了无线局域网的应用领域,现在,大多数厂商生产的无线局域网产品都基于802.11b标准。  2).无线局域网的相关概念  在一个典型的无线局域网环境中,有一些进行数据发送和接收的设备,称为接入点(AP)。通常,一个AP能够在几十至上百米的范围内连接多个无线用户。在同时具有有线和无线网络的情况下,AP可以通过标准的Ethernet电缆与传统的有线网络相联,作为无线网络和有线网络的连接点。无线局域网的终端用户可通过无线网卡等访问网络。  无线局域网在室外主要有以下几种结构:点对点型、点对多点型、多点对点型和混合型。  ●点对点型  该类型常用于固定的要联网的两个位置之间,是无线联网的常用方式,使用这种联网方式建成的网络,优点是传输距离远,传输速率高,受外界环境影响较小。  ●点对多点型  该类型常用于有一个中心点,多个远端点的情况下。其最大优点是组建网络成本低、维护简单;其次,由于中心使用了全向天线,设备调试相对容易。该种网络的缺点也是因为使用了全向天线,波束的全向扩散使得功率大大衰减,网络传输速率低,对于较远距离的远端点,网络的可靠性不能得到保证。  ●混合型  这种类型适用于所建网络中有远距离的点、近距离的点,还有建筑物或山脉阻挡的点。在组建这种网络时,综合使用上述几种类型的网络方式,对于远距离的点使用点对点方式,近距离的多个点采用点对多点方式,有阻挡的点采用中继方式。  其他相关概念  ●微单元和无线漫游  无线电波在传播过程中会不断衰减,导致AP的通讯范围被限定在一定的范围之内,这个范围被称为微单元。当网络环境存在多TAP,且它们的微单元互相有一定范围的重合时,无线用户可以在整个无线局域网覆盖区内移动,无线网卡能够自动发现附近信号强度最大的AP,并通过这个AP收发数据,保持不间断的网络连接,这就称为无线漫游。  ●扩频  大多数的无线局域网产品都使用了扩频技术。扩频技术原先是军事通讯领域中使用的宽带无线通信技术。使用扩频技术,能够使数据在无线传输中完整可靠,并且确保同时在不同频段传输的数据不会互相干扰。无线局域网技术概述       ●直序扩频  所谓直接序列扩频,就是使用具有高码率的扩频序列,在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。  ●跳频扩频  跳频技术与直序扩频技术完全不同,是另外一种扩频技术。跳频的载频受一个伪随机码的控制,在其工作带宽范围内,其频率按随机规律不断改变频率。接收端的频率也按随机规律变化,并保持与发射端的变化规律一致。  跳频的高低直接反映跳频系统的性能,跳频越高,抗干扰的性能越好,军用的跳频系统可以达到每秒上万跳。实际上移动通信GSM系统也是跳频系统。出于成本的考虑,商用跳频系统跳速都较慢,一般在50跳/秒以下。由于慢跳跳频系统实现简单,因此低速无线局域网常常采用这种技术。  无线局域网的结构  根据不同局域网的应用环境与需求的不同,无线局域网可采取不同的网络结构来实现互联。常用的具体有如下几种:  1、网桥连接型:不同的局域网之间互联时,由于物理上的原因,若采取有线方式不方便,则可利用无线网桥的方式实现二者的点对点连接,无线网桥不仅提供二者之间的物理与数据链路层的连接,还为两个网的用户提供较高层的路由与协议转换。  2、基站接入型:当采用移动蜂窝通信网接入方式组建无线局域网时,各站点之间的通信是通过基站接入、数据交换方式来实现互联的。各移动站不仅可以通过交换中心自行组网,还可以通过广域网与远地站点组建自己的工作网络。  3、HUB接入型:利用无线Hub可以组建星型结构的无线局域网,具有与有线Hub组网方式相类似的优点。在该结构基础上的WLAN,可采用类似于交换型以太网的工作方式,要求Hub具有简单的网内交换功能。  4、无中心结构:要求网中任意两个站点均可直接通信。此结构的无线局域网一般使用公用广播信道,MAC层采用CSMA类型的多址接入协议。  无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)www.homelunwen.com、无线网桥、无线Modem及无线网卡等来实现,其中以无线网卡最为普遍,使用最多。无线局域网的关键技术,除了红外传输技术、扩频技术、网同步技术外还有一些其他技术,如:调制技术、加解扰技术、无线分集接收技术、功率控制技术和节能技术。

3. 无线局域网的技术与应用论文 (需要资料)

说明: 

1.802.11、802.11b、802.11g都工作在2.4GHz的ISM(工业、科学、医疗)公共频段,无需向无委申请;而802.11a工作在5GHz频段,该频段目前暂不开放,需要申请。 

2.802.11a和802.11g物理层速率最高都可达54Mbps,传输层速率最高也可达25Mbps,但稳定性有待进一步改善,且成本也较高。而802.11b最高速率可达11Mbps,因为起步较早,技术较为成熟,成本也不高,将是未来最有前途的无线局域网标准,下面重点介绍802.11b标准。 



二、IEEE 802.11b无线网络标准 

1. 无线局域网的物理层 

无线局域网同传统有线局域网的区别,表现在物理层上就是无线局域网一般用无线电作为传输介质,而不是传统的电缆。对于IEEE 802.11b无线局域网,有三种可选物理层:跳频扩频(FHSS)物理层、直接序列扩频(DSSS)物理层和红外线(IR)物理层。物理层的选择取决于实际应用的要求。跳频扩频和直接序列扩频是通信技术中两种常用的扩展频谱技术,用以提高无线信道的利用率和数据通信的安全性。目前大多数基于IEEE 802.11b的无线局域网产品的物理层介质工作在2.4000~2.4835GHz的无线射频频段(ISM频段),采用直接序列扩展频谱技术以提供高达11Mbps的数据传输速率。 

2. 无线局域网的MAC协议 

原则上讲,无线局域网的MAC协议和有线局域网的MAC协议并无本质上的区别。然而,由于无线传输媒体固有的特性以及移动性的影响,无线局域网的MAC协议不能沿用原有的局域网协议。例如,IEEE 802.3的MAC层采用CSMA/CD来使各个不同的站点共享同一物理信道。而实现CSMA/CD的一个重要前提是,各站点能够非常容易地实现冲突检测功能。在有线局域网(如以太网)的情况下,可根据检测电缆线上直流分量的变化容易地实现冲突检测。然而在使用无线传输媒体时,由于以下的原因,很难实现冲突检测。 

1) 冲突检测的能力要求各站能同时发送(发送自己的信号)和接收(决定其他站的传输是否干扰自己的传输),这将增加信道的花费。 

2) 更重要的是,由于隐藏终端问题的存在,即使一个站有冲突检测的能力,并已经在发送时检测到冲突,在接收端仍然会有冲突发生。 

鉴于以上原因,无线局域网协议标准IEEE 802.11b采用了一种具有冲突避免的载波监听多路访问(CSMA/CA)协议实现无线信道的共享。 

一种简单的CSMA/CA可实现如下:在数据包传输之前,无线设备将先进行监听,看是否有其他无线设备正在传输。若传输正在进行,该设备将等待一段随机决定的时间,然后再监听,若没有其他设备正在使用介质,该设备开始传输数据;因为很有可能在一个设备传输数据的同时,另一个设备也开始传输数据,为了避免此类冲突造成的数据丢失,接收设备检测所收到的分组的CRC,如果正确,则向发送设备传输一个确认信息(acknowledgement)以指示没有冲突发生。否则,发送设备将重复上述CSMA/CA过程。 

为了使两个无线设备同时进行传输(这将导致冲突)的可能性减到最小,802.11设计者使用称为发送请求/清除以发送(RTS/CTS)的机制。例如:若数据到达无线节点指定的无线访问点(AP),该AP将给那个无线节点发送一个RTS帧,请求一定量的时间向它传输数据,无线节点将用CTS帧进行回应,表示它将阻止任何其他的通信,直到AP发送完数据为止。其他无线节点也能听到正在发生的数据传输,并把它们的传输延迟到那段时间之后。在这种方式下,数据在节点之间进行传递时,由设备导致的在介质上产生冲突的可能性最小。这种传输机制同时解决了无线局域网中的隐藏终端问题。 

为了确保数据在传输中不丢失,CSMA/CA还引入了确认(ACK)机制,接收者在收到数据后,向发送单元发一个确认通知ACK。若发送者没有收到ACK,表明数据丢失,将再次传输该数据。 

3. 无线局域网实时性性能分析 

IEEE 802.11b无线局域网标准在媒体访问控制层采用CSMA/CA协议以实现无线信道的共享。在网络负荷较轻的情况下,发生冲突的机会很少,再加上一些无线网络产品采取了一些附加的措施,甚至可以完全避免冲突的发生。如Wi-LAN的无线产品AWE 120-24无线网络桥接器利用动态时间分配轮询的方式:当有多个无线远端设备要与基站通信时,基站会根据远端站的ID依次询问各个远端站是否有数据要发送,如果有数据要发送,就给其分配时间片,如果没有,则会继续向下询问,周而复始。这里的所谓动态轮询是指用户可以设置基站的轮询方式,对于非活动站减少对其询问的次数,这样可以保证时间片不会被浪费。动态时间分配轮询技术完全避免了冲突的发生,可以获得比CSMA/CA更好的实时性。这使得无线技术在工业控制网络中的应用成为可能。 



三、基于无线技术的网络化智能传感器介绍 

计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种智能传感器集成了数据采集、数据处理和无线网络接口模块,无线网络接口模块底层网络接口(硬件接口)采用基于IEEE 802.11b的网络接口芯片,高层网络接口(软件接口)采用TCP/IP协议,把TCP/IP协议作为一种嵌入式应用,即把TCP/IP协议固化到智能传感器的ROM中,使得现场数据的收发都以TCP/IP协议进行。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。 

无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)、无线网桥、无线Modem及无线网卡等来实现。 

在工业自动化领域,有成千上万的感应器,检测器,计算机,PLC,读卡器等设备,需要互相连接形成一个控制网络,通常这些设备提供的通信接口是RS- 232或RS-485。无线局域网设备使用隔离型信号转换器,将工业设备的RS-232串口信号与无线局域网及以太网络信号相互转换,符合无线局域网IEEE802.11b和以太网络IEEE 802.3标准,支持标准的TCP/IP网络通信协议,有效的扩展了工业设备的联网通信能力。 



四、无线局域网在工业控制网络中的应用 

工业控制系统的网络化为无线技术在工业控制系统中的应用提供了基础和可能。近几年很多研究人员也展开了这方面的研究工作。中国科学院沈阳自动化所的曾鹏等人以FF(现场总线基金会)颁布的FFHSE(高速以太网)为蓝本,结合无线以太网标准IEEE802.11b,构造了现场级无线通信协议栈。该协议栈保持了基金会现场总线的通信模型,能够完成无线设备间的时间同步和实时通信。韩国釜山国立大学的Kyung Chang Lee等人设计了协议转换模型,实现了Profibus-DP网络和IEEE802.11无线局域网的互连。Mario Alves等人对基于广播方式的现场总线/无线网络的混合网络报文传送延迟时间进行了估算。C.Koulamas等人研究了Profibus现场总线与基于IEEE802.11b的DSSS物理层相结合的性能。 

除了在理论上的研究工作外,在一些工业控制网络中,无线通信技术已获得了应用。如美国罗克威尔公司在基于DeviceNet、Control-net、Ethernet/IP的三层控制网络体系中,加入了无线以太网部分,可以实现无线通信。德国西门子公司在基于Profibus-DP、Profinet的控制网络中结合无线以太网技术,使控制网络具有了无线通信功能。由于无线网络无可比拟的优越性,它可以免去大量的线路连接,节省系统的构建费用和维护成本,还可以满足一些特殊场合的需要,与此同时,大大增强了系统构成的灵活性。加之无线通信技术自身的不断改进,无线通信技术在工业控制领域中必将具有广阔的发展空间和应用前景。 



五、无线技术在工控网络中的应用方案及使用设备 

1.无线工业控制的方法 

通过使用基于无线技术的网络化智能传感器,结合目前市场上出现的各种基于IEEE 802.11b的无线局域网网桥,就可以实现无线局域网技术在工业控制网络中的一种应用方案。无线局域网网桥用作无线访问点(AP),基于无线技术的网络化智能传感器采集现场数据、处理,并以TCP/IP协议对数据进行打包,通过无线链路发送到AP,由于无线链路和有线以太网高层均采用TCP/IP协议,且低层协议对高层协议是透明的,就实现了无线网络和有线网络的无缝连接。通过Internet,就可以实现远程监控。 

2.无线设备的选择 

要实现无线网络,需要选择的设备一般为两种。一种为无线局域网网桥,可将多个无线站点连入已有的局域网之中;另一种为无线通讯装置,例如无线网卡、无线Modem等。下面介绍一下研华公司的无线装置。 

A.WLAN-9200系列11Mbps工业无线局域网接入器 

WLAN-9200是一款用于室外的增强11Mbps无线局域网网桥。它能够在无须任何物理布线的情况下,将多个远程站连接到局域网中。

无线局域网的技术与应用论文 (需要资料)

4. 有线局域网的介绍

有线局域网把分布在数公里范围内的不同物理位置的计算机设备连在一起,在网络软件的支持下可以相互通讯和资源共享的网络系统。

5. 无线局域网的技术与应用论文 (需要资料)

说明: 

1.802.11、802.11b、802.11g都工作在2.4GHz的ISM(工业、科学、医疗)公共频段,无需向无委申请;而802.11a工作在5GHz频段,该频段目前暂不开放,需要申请。 

2.802.11a和802.11g物理层速率最高都可达54Mbps,传输层速率最高也可达25Mbps,但稳定性有待进一步改善,且成本也较高。而802.11b最高速率可达11Mbps,因为起步较早,技术较为成熟,成本也不高,将是未来最有前途的无线局域网标准,下面重点介绍802.11b标准。 



二、IEEE 802.11b无线网络标准 

1. 无线局域网的物理层 

无线局域网同传统有线局域网的区别,表现在物理层上就是无线局域网一般用无线电作为传输介质,而不是传统的电缆。对于IEEE 802.11b无线局域网,有三种可选物理层:跳频扩频(FHSS)物理层、直接序列扩频(DSSS)物理层和红外线(IR)物理层。物理层的选择取决于实际应用的要求。跳频扩频和直接序列扩频是通信技术中两种常用的扩展频谱技术,用以提高无线信道的利用率和数据通信的安全性。目前大多数基于IEEE 802.11b的无线局域网产品的物理层介质工作在2.4000~2.4835GHz的无线射频频段(ISM频段),采用直接序列扩展频谱技术以提供高达11Mbps的数据传输速率。 

2. 无线局域网的MAC协议 

原则上讲,无线局域网的MAC协议和有线局域网的MAC协议并无本质上的区别。然而,由于无线传输媒体固有的特性以及移动性的影响,无线局域网的MAC协议不能沿用原有的局域网协议。例如,IEEE 802.3的MAC层采用CSMA/CD来使各个不同的站点共享同一物理信道。而实现CSMA/CD的一个重要前提是,各站点能够非常容易地实现冲突检测功能。在有线局域网(如以太网)的情况下,可根据检测电缆线上直流分量的变化容易地实现冲突检测。然而在使用无线传输媒体时,由于以下的原因,很难实现冲突检测。 

1) 冲突检测的能力要求各站能同时发送(发送自己的信号)和接收(决定其他站的传输是否干扰自己的传输),这将增加信道的花费。 

2) 更重要的是,由于隐藏终端问题的存在,即使一个站有冲突检测的能力,并已经在发送时检测到冲突,在接收端仍然会有冲突发生。 

鉴于以上原因,无线局域网协议标准IEEE 802.11b采用了一种具有冲突避免的载波监听多路访问(CSMA/CA)协议实现无线信道的共享。 

一种简单的CSMA/CA可实现如下:在数据包传输之前,无线设备将先进行监听,看是否有其他无线设备正在传输。若传输正在进行,该设备将等待一段随机决定的时间,然后再监听,若没有其他设备正在使用介质,该设备开始传输数据;因为很有可能在一个设备传输数据的同时,另一个设备也开始传输数据,为了避免此类冲突造成的数据丢失,接收设备检测所收到的分组的CRC,如果正确,则向发送设备传输一个确认信息(acknowledgement)以指示没有冲突发生。否则,发送设备将重复上述CSMA/CA过程。 

为了使两个无线设备同时进行传输(这将导致冲突)的可能性减到最小,802.11设计者使用称为发送请求/清除以发送(RTS/CTS)的机制。例如:若数据到达无线节点指定的无线访问点(AP),该AP将给那个无线节点发送一个RTS帧,请求一定量的时间向它传输数据,无线节点将用CTS帧进行回应,表示它将阻止任何其他的通信,直到AP发送完数据为止。其他无线节点也能听到正在发生的数据传输,并把它们的传输延迟到那段时间之后。在这种方式下,数据在节点之间进行传递时,由设备导致的在介质上产生冲突的可能性最小。这种传输机制同时解决了无线局域网中的隐藏终端问题。 

为了确保数据在传输中不丢失,CSMA/CA还引入了确认(ACK)机制,接收者在收到数据后,向发送单元发一个确认通知ACK。若发送者没有收到ACK,表明数据丢失,将再次传输该数据。 

3. 无线局域网实时性性能分析 

IEEE 802.11b无线局域网标准在媒体访问控制层采用CSMA/CA协议以实现无线信道的共享。在网络负荷较轻的情况下,发生冲突的机会很少,再加上一些无线网络产品采取了一些附加的措施,甚至可以完全避免冲突的发生。如Wi-LAN的无线产品AWE 120-24无线网络桥接器利用动态时间分配轮询的方式:当有多个无线远端设备要与基站通信时,基站会根据远端站的ID依次询问各个远端站是否有数据要发送,如果有数据要发送,就给其分配时间片,如果没有,则会继续向下询问,周而复始。这里的所谓动态轮询是指用户可以设置基站的轮询方式,对于非活动站减少对其询问的次数,这样可以保证时间片不会被浪费。动态时间分配轮询技术完全避免了冲突的发生,可以获得比CSMA/CA更好的实时性。这使得无线技术在工业控制网络中的应用成为可能。 



三、基于无线技术的网络化智能传感器介绍 

计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种智能传感器集成了数据采集、数据处理和无线网络接口模块,无线网络接口模块底层网络接口(硬件接口)采用基于IEEE 802.11b的网络接口芯片,高层网络接口(软件接口)采用TCP/IP协议,把TCP/IP协议作为一种嵌入式应用,即把TCP/IP协议固化到智能传感器的ROM中,使得现场数据的收发都以TCP/IP协议进行。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。 

无线局域网可以在普通局域网基础上通过无线Hub、无线接入站(AP)、无线网桥、无线Modem及无线网卡等来实现。 

在工业自动化领域,有成千上万的感应器,检测器,计算机,PLC,读卡器等设备,需要互相连接形成一个控制网络,通常这些设备提供的通信接口是RS- 232或RS-485。无线局域网设备使用隔离型信号转换器,将工业设备的RS-232串口信号与无线局域网及以太网络信号相互转换,符合无线局域网IEEE802.11b和以太网络IEEE 802.3标准,支持标准的TCP/IP网络通信协议,有效的扩展了工业设备的联网通信能力。 



四、无线局域网在工业控制网络中的应用 

工业控制系统的网络化为无线技术在工业控制系统中的应用提供了基础和可能。近几年很多研究人员也展开了这方面的研究工作。中国科学院沈阳自动化所的曾鹏等人以FF(现场总线基金会)颁布的FFHSE(高速以太网)为蓝本,结合无线以太网标准IEEE802.11b,构造了现场级无线通信协议栈。该协议栈保持了基金会现场总线的通信模型,能够完成无线设备间的时间同步和实时通信。韩国釜山国立大学的Kyung Chang Lee等人设计了协议转换模型,实现了Profibus-DP网络和IEEE802.11无线局域网的互连。Mario Alves等人对基于广播方式的现场总线/无线网络的混合网络报文传送延迟时间进行了估算。C.Koulamas等人研究了Profibus现场总线与基于IEEE802.11b的DSSS物理层相结合的性能。 

除了在理论上的研究工作外,在一些工业控制网络中,无线通信技术已获得了应用。如美国罗克威尔公司在基于DeviceNet、Control-net、Ethernet/IP的三层控制网络体系中,加入了无线以太网部分,可以实现无线通信。德国西门子公司在基于Profibus-DP、Profinet的控制网络中结合无线以太网技术,使控制网络具有了无线通信功能。由于无线网络无可比拟的优越性,它可以免去大量的线路连接,节省系统的构建费用和维护成本,还可以满足一些特殊场合的需要,与此同时,大大增强了系统构成的灵活性。加之无线通信技术自身的不断改进,无线通信技术在工业控制领域中必将具有广阔的发展空间和应用前景。 



五、无线技术在工控网络中的应用方案及使用设备 

1.无线工业控制的方法 

通过使用基于无线技术的网络化智能传感器,结合目前市场上出现的各种基于IEEE 802.11b的无线局域网网桥,就可以实现无线局域网技术在工业控制网络中的一种应用方案。无线局域网网桥用作无线访问点(AP),基于无线技术的网络化智能传感器采集现场数据、处理,并以TCP/IP协议对数据进行打包,通过无线链路发送到AP,由于无线链路和有线以太网高层均采用TCP/IP协议,且低层协议对高层协议是透明的,就实现了无线网络和有线网络的无缝连接。通过Internet,就可以实现远程监控。 

2.无线设备的选择 

要实现无线网络,需要选择的设备一般为两种。一种为无线局域网网桥,可将多个无线站点连入已有的局域网之中;另一种为无线通讯装置,例如无线网卡、无线Modem等。下面介绍一下研华公司的无线装置。 

A.WLAN-9200系列11Mbps工业无线局域网接入器 

WLAN-9200是一款用于室外的增强11Mbps无线局域网网桥。它能够在无须任何物理布线的情况下,将多个远程站连接到局域网中。

无线局域网的技术与应用论文 (需要资料)

6. 无线局域网的媒体接入策略与有线局域网有何不同?

建设通信链路的方式无非是有线和无线两种。在初期规划时,选择有线还是无线通信,或是有线无线互为备份,用户应为此进行认真的调研分析。来自福建媒体资源网
    1.有线通信的开通必须架设电缆,或挖掘电缆沟或架设架空明线;而架设无线链路则无需架线挖沟,线路开通速度快。
    将所有成本和工程周期统筹考虑,无线链路的投资是相当节省的。
    2.一般有线通信(铜缆)的质量会随着线路的扩展而急剧下降,如果中间通过电话转接局,则信号质量下降更快,到4.5公里
    左右已经无法传输高速率数据,或者会产生很高的误码率,速率级别明显降低;而对于无线扩频通 信方式,50公里内几乎没有影响,
    一般可提供从64K到11M的通信速率,误码率小于10-10.
    3.有线通信受地势影响,不能任意铺设;而无线通信覆盖范围大,几乎不受地理环境限制。
    4.有线通信铺设时需挖沟架线,成本投入较大,且电缆数量固定,通信容量有限;而无线扩频则可以随时架设,随时增加链路,安装、扩容方便。
    5.有线通信除电信部门外,其它单位的通信系统没有在城区挖沟铺设电缆的权力;而无线通信方式则可根据客户需求灵活定制专网。
    6.有线链路的维护需沿线路检查,出现故障时,一般很难及时找出故障点,而无线扩频通信只需维护扩频电台,出现故障时则能快速找出原因,恢复线路正常运行。
    7.建设通信线路时一般需要备份,如果主备通道皆为有线线路,往往会存在相关故障点。若一条有线中断,
    另外一条很可能由于整个电缆被挖断或被破坏、配线架损坏、转接局断电等原因,同时中断。香港服务器租用商提醒您如果有线通信线路
    利用无线扩频进行备份,当有线线路中断时,则可将通信链路切换到无线链路上,仍可保证通信线路的畅通。
    8.无线扩频通信可以迅速(数十分钟内)组建起通信链路,实现临时、应急、抗灾通信的目的,而有线通信则需要较长的时间。
    9.在安全性能方面,无线扩频通信本身就起源于军事上的防窃听技术;而有线链路沿线均可能遭搭线窃听。
    综上所述,无线扩频通信在可靠性、可用性和抗毁性等很多方面超出了传统的有线通信方式,
    尤其在一些特殊的地理环境下,更是体现出了其优越性。当然,无论是选择有线还是无线通信手段,都应根据具体情况因地制宜,量体裁衣。

7. 如何实现企业无线局域网与有线网络一体化?拜托了各位 谢谢

随着无线技术在企业中的推广,越来越多的网络管理员喜欢把无线网络当作有线网络的一个扩展,提高网络的覆盖率。笔者也不例外。不过在这么做的时候,就需要把无线网络跟有线网络进行集成。但是毕竟无线网络技术是后来发展起来的一门通信技术,在跟有线网络集成的时候,会对现有的有线网络部署造成一定的冲击。笔者这里就对有线网络与无线网络在集成过程中出现的常见冲突做一番分析,帮助网络管理员顺利实现有线网络与无线网络的一体化过进程。  一、对于虚拟局域网应用的冲突  虚拟局域网有助于企业提高网络安全、提高网络性能。由于物理划分网络工作量大,灵活性差,故现在大部分企业都采用了虚拟局域网的形式来对网络进行逻辑划分。虚拟局域网有很多实现方式,如基于IP地址、基于端口、基于协议等实现方式。不过据笔者了解,基于端口的实现方式相对来说灵活性、实用性更高一点,是企业首选的虚拟局域网实现方式。但是如果采用这种实现方式的话,则在部署企业无线网络时,需要注意,很可能会造成不必要的麻烦。为什么这么说呢?笔者举一个例子大家也许就会明白。 如企业现在划分了多个局域网,财务部门与行政部门分属于不同的局域网。在部署过程中,主要通过基于端口的方式实现。网络管理员把虚拟局域网交换机中端口设置为三个局域网。假设端口1到端口5虚拟局域网甲规行政等部门使用。端口6到7为虚拟局域网乙归财务部门使用。端口8到10为虚拟局域网丙归研发部门使用。现在在会议室中部署了一个无线路由器,其是连接在虚拟局域网甲上的。此时假设财务经理要在会议室开会,他把他的带有无线上网功能的笔记本拿到会议室,此时他通过会议室的无线路由器连接到的是虚拟局域网乙,即行政部门所在的虚拟局域网。此时财务经理就无法访问自己财务部门的虚拟局域网。也就是说,无线局域网的采用可能会对以前设置的虚拟局域网产生冲突。  遇到这种情况该如何处理呢?此时网络管理员可以添加无线路由器的方式来处理。即在财务部门中也设置一个无线路由器,其连接到的是财务部门所在的虚拟局域网。然后为各个无线路由器设置不同的密码。如此的话,财务经理无论走到哪个办公室,都只能够通过自己办公室的无线路由器连接网络。但是这有一个缺陷,即无线路由器信号强弱的变化。我们都知道,一个办公室若隔音措施做的比较好的话,则其无线路由器的信号就不能够传递到外面。而且无线路由器信号也随着距离的不同而有强弱。故为不同的局域网分别设置不同的无线路由器只适用于开发型的办公室。对于密闭型的办公室或者分布在不同楼宇的办公室不怎么适用。  另外就是变更现有虚拟局域网的实现方式。如可以把基于端口的实现方式设置为基于IP地址或者MAC地址的实现方式。如此的话,无论财务经理通过什么方式、无论在什么地方连接到企业网络,只要其IP地址或者MAC地址不变的话,则其所连接的虚拟局域网都不会改变。那么财务经理就能够正常访问自己的网络。如当财务经理来到会议室,虽然是通过会议室的无线路由器进行网络访问。他在向虚拟局域网交换机递交连接请求时,交换机会根据财务经理电脑的IP地址或者MAC地址来判断他应该属于哪个局域网,然后帮他转接过去。并不会因为位置不同,而更换连接的虚拟局域网。不过这也会增加虚拟局域网的管理负担。如财务经理的电脑坏了或者无线网卡坏了,则换过设备之后就需要调整局域网交换机的设置,更改MAC地址等等。  所以说,企业采用无线局域网之后会于虚拟局域网应用产生冲突。鱼与熊掌难于兼得。网络管理员在部署无线网络时,如果企业以前已经有虚拟局域网了,则就需要根据自己的管理习惯以及企业的网络规划,选择合适的解决冲突的方式。  二、对有线网络的安全性规划提出挑战  采用无线网络技术之后,也会对企业现有的网络安全规划提出挑战。如企业现在正在通过虚拟局域网来提高网络的安全性。为了保障研发部门资料的安全,特意为研发部门设置了一个虚拟局域网。其他部门不能够访问研发部门的网络,而研发部门则可以访问企业网络的全部资源。此时如果在研发部门部署一个无线网络,会造成哪些安全漏洞呢?  一是非法用户如果知道无线路由器连接的账号,则可以在无线路由器信号覆盖的范围之内,连入到研发部门所在的局域网,进行资料窃取或者其他的一些破坏活动。无线信号没有物理线路的限制,为此只需要知道无线连接的用户名与密码(有些网络管理员甚至不会给无线路由器设置密码),就可以做到。而如果不采用无线网络的话,则必须要把电脑拿到他们的办公区域、然后插上网线才行。可见后者的安全性要高的多。  二是传输信号的安全。在以太网技术中,如果对于传输的内容没有加密,则就可以通过侦听等手段获取传输的内容。为此在无线技术中,如果对于无线信号没有采用加密处理的话,则其他无线用户就可以通过侦听的手段,获取这个用户传输的内容。这无疑也是对企业现有网络安全设计的一个挑战。  那么该如何解决这些问题呢?笔者给各位网络管理员提下面几个建议。  1、对于安全性要求比较高的部门,最好不要部署无线路由器。如对于研发部门,可能是企业重点保护的部门。为了他们部门信息的安全,最好不要部署无线路由器。因为便利与安全要做出选择的话,我们往往会选择安全。毕竟若这些资料泄露的话,可能对企业会造成致命的打击。  2、要重新调整企业有线网络的安全规划,把无线网络也考虑进去。如根据企业的安全性级别的不同,给无线网络传输也设置一定的加密级别。让其无线信号也是经过加密后才传输。另外,对于无线连接也最好设置密码,防止未经授权的用户通过无线路由器进行越权访问。特别是那些企业中原先部署了虚拟局域网的网络管理员,特别需要注意这一点。否则的话,很有可能被人家占了这个空子,连入到不允许访问的虚拟局域网中。  3、企业中可能会部署多个无线路由器。在没有设置密码的情况下(或者用户知道无线连接访问密码),用户可以自主选择通过哪个路由器来进行访问。而如果这些无线路由器又恰巧接入到不同的虚拟局域网的话,那么就会存在比较大的安全漏洞。为此,不同的无线路由器连接不同的局域网,为了安全起见,除了为每个路由器设置连接密码外,最好还要采取其他一些措施。如在无线路由器的安全策略中,设置只允许某些特定的IP地址或者MAC地址才能够允许无线连接。这无疑可以巩固无线网络虚拟局域网的安全性。

如何实现企业无线局域网与有线网络一体化?拜托了各位 谢谢

8. 无线局域网的介绍

在无线局域网WLAN发明之前,人们要想通过网络进行联络和通信,必须先用物理线缆-铜绞线组建一个电子运行的通路,为了提高效率和速度,后来又发明了光纤。当网络发展到一定规模后,人们又发现,这种有线网络无论组建、拆装还是在原有基础上进行重新布局和改建,都非常困难,且成本和代价也非常高,于是WLAN的组网方式应运而生。无线局域网络英文全名:Wireless Local Area Networks;简写为: WLAN。它是相当便利的数据传输系统,它利用射频(Radio Frequency; RF)的技术,使用电磁波,取代旧式碍手碍脚的双绞铜线(Coaxial)所构成的局域网络,在空中进行通信连接,使得无线局域网络能利用简单的存取架构让用户透过它,达到“信息随身化、便利走天下”的理想境界。

最新文章
热门文章
推荐阅读