我国学者量子计算研究获得哪些新进展?

2024-05-19 13:44

1. 我国学者量子计算研究获得哪些新进展?

近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。

开发与现代半导体工艺兼容的电控量子芯片是量子计算机研制的重要方向之一。由于固态系统环境复杂,存在着电荷噪声、核磁场等各种退相干机制,不同形式的编码方式都有一定局限,比特的超快操控与长相干往往不可兼得。郭国平研究组2016年首次在砷化镓半导体双量子点芯片中实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特,将传统电荷量子比特的品质因子提高了10倍以上。

为了提高杂化量子比特能级可控性,研究人员将非对称思想进一步运用到三量子点系统,将原有的双量子点结构扩展成线性耦合三量子点系统。他们通过理论计算分析发现,当中间量子点与其两侧量子点耦合强度非对称时,电子在双量子点中演化的能级结构可以被第三个量子点高效地“间接”调控。在实验中,他们首先通过半导体纳米加工工艺精确制备出非对称耦合三量子点结构,再利用电子的原子壳层结构填充原理,巧妙地化解多电子能级结构复杂性这一难题,构造了具有准平行能级的杂化量子比特。在保证比特相干时间的情况下,通过调节第三个量子点的电极电压,清晰地观察到比特能级在2至15GHz范围内连续可调。

我国学者量子计算研究获得哪些新进展?

2. 量子通信与量子计算行业深度研究

 
    温馨提示: 如需原文档,可在PC端登陆未来智库www.vzkoo.com搜索下载本报告。
   1、量子通信较传统算法更具优势:量子通信在传统算法的基础上进一步扩展,将融合和叠加更多的信息数 据,借由量子之间的相干性,整体的传输、分析速率有超倍的提升。
   2、量子通信技术日渐成熟:量子通信技术相较于量子计算更加成熟,目前已经在通讯领域付诸实践,如 “京沪干线”、“墨子号”量子通信卫星等实践充分证明了量子通信的可行性,量子通信技术已经开始从理 论走向实践。
   2、网络流量及用户数的增长将是量子通信的发展驱动力:随着5G时代的到来,移动互联网流量预计将会出 现井喷式增长,大量的信息数据也将在云上进行分析和处理,网络信息安全需求也将出现新一轮增长,量子 通信的加密式的传递方式将成为网络信息安全解决方案的重要一环。
     一、量子计算与量子通信简介
   二、量子计算与量子通信的应用
   三、量子通信发力网信安全市场
   四、 投资建议
   五、风险提示
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

3. 量子计算与量子计算机进展随议

 我第一次对量子计算产生印象是在1995年,虽然之前知道量子计算和量子计算机的概念,但都不如那次印象深刻。那个时候我在中科院计算所CAD开放实验室担任副主任。在接待中科院一位领导的过程中,他在观看了我们的科研成果后说道,你们如果能够将精力投入到量子计算领域就好了,这个领域目前看很艰难,但从国家角度看急需开展研究。时至今日,我除了对这件事印象深刻之外,还对这位领导的眼光、视野深感佩服。
   由于我从事的是CAD、图形学、可视化方面的研发工作,偏软件、偏应用,和量子计算差异很大,个人和实验室在量子计算方面也缺乏基础,再加上后来把主要精力投入到了流程工业软件上,此事当时也只能作罢。
   时隔数年,再次关注量子计算,一是因为国内在量子计算、量子计算机和量子通信等方面取得了进展;另一个原因是2017年到美国时,发现参加图灵奖颁奖典礼的很多科学家都在做量子计算。另外有一次在过美国海关时,被海关人员问到了量子计算的一些事情,这个经历令我印象深刻。在此之后,作为计算领域的专业人士,我对量子计算就无法再持忽视态度了。
   由于我对量子计算、量子计算机、量子通信尚属外行,为了理解这些概念,我主动查阅了一些文献资料,对于量子、量子计算、量子计算机、量子通信等概念和原理做了了解,这样相对于对量子计算感兴趣的非专业人士来讲,我比他们确实更了解一些,但在该领域的专业从业人士看来,我依然是一个外行。以我这个状态,今天也是“斗胆”就量子计算进展做一些议论,其目的是为了引起 社会 思考,有助于量子计算等 科技 的发展,同时也是为了让读者了解CCF的CNCC上即将举办的“后量子霸权阶段的量子计算”技术论坛。由于我相对外行,肯定有很多描述不当之处,还请读者批评指正,如果要听真正的专家讲解,还是可以到CNCC去听讲、提问或参与讨论,该技术论坛的相关信息请访问CNCC网站(cncc.ccf.org.cn)。
   为了了解后面的内容,首先要弄清楚什么是量子。量子(quantum)是现代物理的重要概念,即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,该最小基本单位被称为量子。量子一词最早是由德国物理学家M·普朗克在1900年提出,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人不断完善,在20世纪的上半叶,建立了完整的量子力学理论体系。量子力学原理存在很多和经典物理原理不同的地方,如能量不连续、波粒二象性、不可测(薛定谔猫原理)、量子纠缠等,因篇幅所限,这些概念不在本文中叙述,读者可以通过查阅文献来了解。
   要注意的是,量子体系有很多种,目前领域内普遍关注的量子计算实现方式有超冷原子、离子阱、光子、超导量子比特、半导体量子点、拓扑量子计算、N-V色心等,读者有时间也可以自行了解其具体含义。
   量子通信利用了量子的基本特性(主要是量子纠缠)进行安全通信,主要分为量子密钥分发和量子态隐形传输两种方式。量子密钥分发可以建立安全的通信密码,实现一次一密的加密传输,有极高的安全性。量子密钥分发技术再辅以光开关等技术,还可以实现量子密钥分发网络,实现大规模应用。量子态隐形传输是基于量子纠缠态的分发与量子联合测量,实现信息传输,可以实现任意远距离的量子密钥分发。目前从报道看,中国的量子通信技术有很大进展,但由于很难看到具体的技术资料,源于报道只言片语的相关信息,很难推断出大众关心的产业化应用时间表。
   量子计算范围比较广,泛指使用量子力学原理进行计算的所有技术,其中除了量子计算机之外,还有在传统计算机上的模拟量子计算,以及量子计算模拟芯片等。目前量子计算研究进展很快,但量子计算的真正突破取决于真正的量子计算机的进展,尤其是量子存储和计算器件(注意,这里没有使用芯片,因为量子器件和传统的芯片是完全不同的概念)。因为量子计算机可以实现存储容量的指数级增长,同时具有天然的并行计算能力,它可以极大提升存储能力和计算能力。
   为了弄清楚量子计算、量子计算机的进展, 2020年3月,CCF YOCSEF举办了一个思辨式的技术论坛,论坛题目是“ 量子计算机离我们还有多远?”。这场论坛吸引了2000多名观众在线参与,是一次不错的科学普及和对量子计算机发展的思辨活动。在这个技术论坛上,我了解到,量子计算一 直受到各国政府、大型企业及科学家的重视,政府和大型企业已经投入了大量资金。且有报道称,预计未来5年量子计算机的性能每年都将提高10倍,这意味着到2025年量子计算机的速度将比现在提高10万倍。但同时对量子计算机的进展,业界也存在不同的声音,如2019年法国蒙彼利埃学院理论物理学家Michel Dyakonov就在IEEE Spectrum发表文章,认为在可预见的将来看不到有用的量子计算机;美国俄克拉荷马州立大学的知名教授Subhash Kak也持类似观点。该论坛的组织者梳理了国内外量子计算方面的研究,将研究内容分为三个类别进行分析:量子计算机、模拟量子计算机、传统计算机上实现的量子算法或量子软件,发现学界争议的核心点是在量子计算机方面,而对于后两个类别的研究内容,学者之间几乎没有争议。为此将该论坛焦点定位在“量子计算机”领域,希望能够拨开笼罩在量子计算机上的迷雾。论坛覆盖基本原理、基本进展、工程化、产业化等方面内容,形成的共识是广泛商用的通用量子计算机还需要等待10年以上,甚至可能要等30年。从后来的报道看,该论坛确实让参会者了解了量子计算机的相关概念和原理,并对量子计算机的研究进展有了一定的认知,我遇到的参会者也基本上都表示很有收获。
   一次论坛不能让人了解全部,也无法解决所有问题,CCF之前已经安排了很多量子计算的研讨、思辨活动,后续还将安排不同深度、不同广度的活动。本文要推荐的是即将在CNCC2020上举办的一个技术论坛“后量子霸权阶段的量子计算”。本次论坛由中科院计算所孙晓明和张家琳副研究员主导策划,邀请了 范桁( 中科院物理所研究员,固态量子信息与计算实验室主任,报告题目为超导量子计算与量子模拟)、 孙麓岩( 清华大学交叉信息研究院,报告题目为量子纠错)、 尹璋琦( 北京理工大学物理学院量子技术研究中心教授,报告题目为云端量子计算)、 张家琳( 中科院计算所副研究员,报告题目为量子电路深度优化)等,内容很具体,适合计算领域专业人士参与。这些专家在量子计算领域比我专业得多,如果能和他们当面交流,相信会有更大收获。论坛具体安排在10月24日下午13:30~15:30,如果有兴趣观看他们的报告,并和这些专家交流,可通过CNCC网站(cncc.ccf.org.cn)报名参与。

量子计算与量子计算机进展随议

4. 量子计算机的研究历史

量子计算机,早先由理查德·费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。 量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等纸上谈兵状态。一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法 后,因其对通行于银行及网络等处的RSA加密算法破解而构成威胁后,量子计算机变成了热门的话题。除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。 20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。 1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子计算机能完成对数运算, 而且速度远胜传统计算机。这是因为量子不像半导体只能记录0与1,可以同时表示多种状态。如果把半导体计算机比成单一乐器,量子计算机就像交响乐团,一次运算可以处理多种不同状况,因此,一个40位元的量子计算机,就能解开1024位元的电子计算机花上数十年解决的问题。 随着计算机科学的发展,史蒂芬·威斯纳在1969年最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)年发表。史蒂芬·威斯纳的文章发表于1983年[8]。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼在一个著名的演讲中提出利用量子体系实现通用计算的想法。紧接着1985年大卫·杜斯提出了量子图灵机模型 [9]。人们研究量子计算机最初很重要的一个出发点是探索通用计算机的计算极限。当使用计算机模拟量子现象时,因为庞大的希尔伯特空间而数据量也变得庞大。一个完好的模拟所需的运算时间则变得相当可观,甚至是不切实际的天文数字。理查德·费曼当时就想到如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减少,从而量子计算机的概念诞生。

5. 中国量子计算领域获重大突破,我国是否重视量子技术发展?

我国当然重视量子技术的发展,因为量子测量技术与传统产业的结合将产生新的技术变革,一些重点领域有望率先推广应用。以量子惯性导航、量子目标识别、量子重力测量、量子时间基准、量子磁场测量为代表的一批新型量子测量领域在国防建设和军事应用中具有重大战略价值,被政府和科研机构广泛接受世界各地的机构。在解决工程化和实际应用问题后,有望率先在涉及国家安全、国计民生的重点领域得到应用。

其次量子通信是一种利用量子比特作为信息载体进行信息交互的通信技术。量子通信有两个最典型的应用,即量子密钥分发和量子隐形传态。量子密钥分发是指利用量子态来加载信息,并通过一定的协议在相距较远的两个通信方之间共享密钥。量子力学的基本原理保证了密钥不能被窃听,从而原则上可以实现无条件安全的量子秘密通信。

再者能够更好地实现量子优越性。即量子计算机在给定问题上超越传统超级计算机的能力,需要对大约50个量子位进行连贯操作。对量子计算有直接影响的量子理论的关键原理包括叠加粒子同时处于不同状态的能力、纠缠粒子即使在很远的距离内也能相互关联的能力,以及干扰粒子的能力相互放大或抵消。

要知道的是中国的量子通信技术领先于世界,国外很多国家都没有。对于这种只有中国拥有的技术,以美国为首的许多世界大国都提出了与中国共享的要求,甚至愿意使用本国的先进技术。用技术换取技术,面对这样一个对技术强国的渴望,是不是说明中国的量子技术很强大?自从中国拥有了世界上第一颗量子卫星,中国开始站在科技的巅峰。未来军事机密更难破解,通信也有自己独特的技术,别人无法破解。

中国量子计算领域获重大突破,我国是否重视量子技术发展?

6. 量子计算迈出了一大步

来自哈佛-麻省理工学院超冷原子中心(Harvard-MIT Center for ultra - cold Atoms)和其他一些大学的物理学家团队开发了一种特殊类型的量子计算机,称为可编程量子模拟器,能够使用256个量子比特。
  
 该系统标志着朝着建造大规模量子机器的方向迈出了重要一步,量子机器可以用来揭示一系列复杂的量子过程,并最终帮助在材料科学、通信技术、金融和许多其他领域带来现实世界的突破,克服了当今最快的超级计算机都无法克服的研究障碍。量子位是量子计算机运行的基本构件,也是其巨大处理能力的来源。
  
 哈佛量子计划(Harvard Quantum Initiative)的联合主任、乔治·瓦斯默·莱弗里特(George Vasmer Leverett)物理学教授米哈伊尔·鲁金(Mikhail Lukin)说,“这将该领域带入一个迄今为止没有人涉足过的新领域。”Sepehr Ebadi是是这项研究的第一作者。根据他的说法,系统前所未有的规模和可编程性使其处于量子计算机竞赛的前沿,它利用极小尺度下物质的神秘特性来极大地提高处理能力。在适当的情况下,量子位的增加意味着该系统可以比标准计算机运行的经典位存储和处理指数级多的信息。256量子位可能产生的量子态数量超过了太阳系原子的数量。
  
 这个模拟器已经允许研究人员观察到一些以前从未在实验上实现过的奇异的物质量子态,并进行量子相变研究,其精确性足以作为磁在量子水平上如何工作的教科书范例。这些实验提供了关于量子物理基础材料特性的有力见解,并可以帮助科学家们设计具有奇异特性的新材料。
  
 该项目使用了研究人员在2017年开发的一个平台的显著升级版本,该平台能够达到51量子位的大小。这个较旧的系统允许研究人员捕捉超冷的铷原子,并使用一种称为光镊的一维单独聚焦激光束阵列将它们按特定的顺序排列。这个新系统允许原子在二维光镊阵列中组装。这将可实现的系统大小从51个量子位增加到256个。利用镊子,研究人员可以将原子排列成无缺陷的模式,并创造出可编程的形状,如正方形、蜂窝状或三角形晶格,以设计量子位元之间的不同相互作用。Ebadi说:“这个新平台的主要设备是一种被称为空间光调制器的设备,它被用来塑造一个光波前,从而产生数百个单独聚焦的光镊光束。”“这些设备本质上与计算机投影仪中用于在屏幕上显示图像的设备相同,但我们已经将它们改造成我们的量子模拟器的关键组件。”
  
 原子在光镊中的初始载荷是随机的,研究人员必须移动原子以使其排列成目标几何形状。研究人员使用第二组移动的光镊将原子拖到它们想要的位置,消除了初始的随机性。激光让研究人员完全控制原子量子位元的位置及其相干量子操纵。
  
 研究人员目前正致力于通过改进激光对量子位的控制和使系统更具可编程性来改进该系统。他们也在积极 探索 如何将该系统用于新的应用,从 探索 奇异的量子物质形式到解决可以在量子比特上自然编码的具有挑战性的现实问题。
  
 “这项工作为许多新的科学方向提供了可能,”Ebadi说。“我们离这些系统能做的事情的极限还很远。”

7. 量子信息技术的量子计算

曾创作出《侏罗纪公园》和《失去的世界》等作品的著名科幻作家迈克尔·克莱顿,在科幻小说《时间线》中曾尝试用文学的笔调来想象量子计算的神奇。其中,一家名为国际技术公司的经理们如此推销其眼中的高新科技:“普通的计算机用电子的两种状态计算,这两种状态被定为0和1。但在20年前,理查德·费曼就提出,有可能利用电子所有的32个量子态来进行快速计算。现在有诸多实验室正在试图制造这样的计算机。它们的优点是难以想象的、强大的并行计算能力。”作为科幻作品,克莱顿的小说中充斥着“量子多宇宙”“量子泡沫虫洞”“量子运输”“量子纠缠态”等令人既感新奇又感陌生的词汇,书中之“电子的32个量子态”说法也并不科学。然而,克莱顿预言的量子“并行计算”的强大潜力和美好前景,如今却正在现实世界一步步得到印证。具体而言,1965年,英特尔公司的创始人之一戈登·摩尔针对电子计算机技术的发展提出了“每18个月计算能力翻倍”的摩尔定律。然而,由于传统技术的物理局限性,这一能力或将在未来10~20年之内达到极限。据保守估计,2018年芯片制造业就将步入16纳米的工艺流程,业内专家则认为,16纳米制程已经是普通硅芯片的尽头。事实上,当芯片的制程小于20纳米之后,量子效应就将严重影响芯片的设计和生产,单纯通过减小制程将无法继续遵循摩尔定律,而突破的希望恰在于量子计算。从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储的数达2的250次方,比现有已知的宇宙中全部原子数目还要多。无论在基础理论还是在具体算法上,量子计算都是超越性的。因此,对量子计算的相关研究及量子计算机的具体研制已成为世界科学领域最闪亮的“明珠”之一。比如,美国国防部对此就给予了高度重视,国防高级研究计划署(DARPA)专门制定了名为“量子信息科学和技术发展规划”的研究计划,其对外公开宣称的目标是,若干年内要在核磁共振量子计算、中性原子量子计算、谐振量子电子动态计算、光量子计算、离子阱量子计算及固态量子计算等领域取得重大研究进展。科学社会学的奠基人贝尔纳曾说:“科学与战争一直是极其密切地联系着的。”今天,倘若我们要追溯风靡全球的信息化战争之科技源头的话,无疑是1946年世界第一台计算机“ENIAC”诞生所开启的电子信息科技革命。然而,这一曾彻底颠覆机械化战争图景的电子信息科技,在遵循“摩尔定律”飞速前行了数十年之后,制约其进一步发展的系列问题日渐凸显:电子计算机的极限运算速度是否存在?越来越一体化的电子信息网络如何应对“网电空间战”?等等。对此,近年来不断突破的量子信息科技正在开启新的机遇之门,势必在未来重新涂抹战神的面孔。

量子信息技术的量子计算

8. 量子计算的介绍

文章主要介绍了量子计算的含义,让大家知道什么是量子计算,还有关于量子计算的一些相关原理,以及对于未来量子计算的发展前景。